Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 4246

Details

Autor(en) / Beteiligte
Titel
Aerogels for Energy Saving and Storage
Auflage
1st ed
Ort / Verlag
Newark : John Wiley & Sons, Incorporated,
Erscheinungsjahr
2024
Beschreibungen/Notizen
  • Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 The History, Physical Properties, and Energy-Related Applications of Aerogels -- 1.1 Definition and History of the Aerogels -- 1.1.1 Basic Characteristics and Definition of Aerogels -- 1.1.2 Brief History and Evolution of the Aerogel Science -- 1.2 The Physics Properties of the Aerogels -- 1.2.1 Mechanical Properties -- 1.2.2 Thermal Properties -- 1.2.2.1 Solid Conductivity -- 1.2.2.2 Gaseous Conductivity -- 1.2.2.3 Radiative Heat Transfer -- 1.2.3 Optical Properties -- 1.2.4 Electrical Properties -- 1.2.4.1 Dielectric Properties -- 1.2.4.2 Electrical Conductivity -- 1.2.4.3 Negative Permittivity and Negative Permeability -- 1.2.5 Acoustic Properties -- 1.3 Energy-Related Aerogel Applications -- 1.3.1 Applications in Energy Saving -- 1.3.2 Applications in Energy Conversion -- 1.3.3 Applications in Energy Storage -- 1.4 Prospects -- 1.4.1 Fundamental Science of the Aerogels -- 1.4.2 Novel Aerogels -- 1.4.3 Novel Application and Industrialization Technology of the Aerogels -- References -- Chapter 2 Aerogels and Their Composites in Energy Generation and Conversion Devices -- 2.1 Introduction to Aerogels -- 2.2 Strategies for Development of Aerogel Materials -- 2.2.1 Oxide-based Aerogel -- 2.2.2 Organic Aerogel -- 2.2.3 Carbon-based Aerogel -- 2.2.4 Chalcogenide Aerogel -- 2.2.5 Inorganic Gels -- 2.3 Chemistry and Mechanisms of Aerogels Formation -- 2.3.1 Mechanism of Network Formation in Aerogels -- 2.3.1.1 Sol-GelMethod -- 2.3.1.2 Self-AssemblyMethod -- 2.3.1.3 Emulsion Method -- 2.3.1.4 3-DPrinting -- 2.4 Drying Techniques -- 2.4.1 Supercritical Drying -- 2.4.2 Freeze Drying -- 2.4.3 Ambient Pressure Drying -- 2.4.4 Organic Solvent Sublimation Drying -- 2.5 Properties and Characterization -- 2.5.1 Aerogel Characterization.
  • 2.5.2 Optical and IR Properties -- 2.5.3 Thermal Properties -- 2.5.4 Mechanical and Acoustic Properties -- 2.6 Applications of Aerogel in Energy Storage and Energy Saving -- 2.6.1 Batteries -- 2.6.1.1 Li-ion Battery -- 2.6.1.2 Li-SBattery -- 2.6.1.3 Li-airBattery -- 2.6.1.4 Zn-ionBattery -- 2.6.1.5 Zn-airBattery -- 2.6.1.6 Na-ionBattery -- 2.6.2 Supercapacitors -- 2.6.2.1 Electric Double Layer Capacitors -- 2.6.2.2 Pseudo-capacitors -- 2.6.2.3 Hybrid Capacitors -- 2.6.3 Fuel Cells -- 2.6.4 Electrocatalytic Hydrogen Evolution -- 2.6.5 Electrocatalytic Oxygen Reduction -- 2.7 Summary and Future Prospects -- Acknowledgments -- References -- Chapter 3 Metal Aerogels for Energy Storage and Conversion -- 3.1 Introduction of Metal Aerogels -- 3.2 Characterizations -- 3.2.1 Densities and Pore Structures -- 3.2.2 Morphologies -- 3.2.3 Element Distribution -- 3.2.4 Crystalline Structure -- 3.2.5 Mechanical Properties -- 3.2.6 Time-Lapse Techniques -- 3.3 Synthesis Methodologies -- 3.3.1 Mechanistic Insights -- 3.3.2 Two-Step Gelation -- 3.3.2.1 Precursors -- 3.3.2.2 Reductants -- 3.3.2.3 Initiation -- 3.3.3 One-Step Gelation -- 3.3.4 Acceleration -- 3.3.5 Postsynthesis -- 3.3.6 Drying of Wet Gels -- 3.3.7 Freezing-Based Method -- 3.3.7.1 Freeze-Casting -- 3.3.7.2 Freeze-Thawing -- 3.3.7.3 3D Printing -- 3.4 Energy-Related Applications -- 3.4.1 Electrocatalysis in Fuel Cells -- 3.4.1.1 Fuel Oxidation Reactions -- 3.4.1.2 Oxygen Reduction Reactions -- 3.4.2 Electrocatalysis in Water Splitting -- 3.4.2.1 Oxygen Evolution Reactions -- 3.4.2.2 Hydrogen Evolution Reactions -- 3.4.3 Electrocatalytic CO2 Reduction -- 3.4.4 Photoelectrocatalysis for Alcohol Oxidation -- 3.4.4.1 Energy Storage and Conversion -- 3.4.4.2 Electrochemical Energy Storage -- 3.4.4.3 Hydrogen Storage -- 3.4.4.4 Self-PropulsionDevices -- 3.5 Conclusions -- References.
  • Chapter 4 Aerogels Using Polymer Composites -- 4.1 Introduction -- 4.2 Preparation of Polymer-Based Aerogels -- 4.2.1 The Sol-Gel Process -- 4.2.2 Aging -- 4.2.3 Gel-Aerogel Transition (Drying) -- 4.2.3.1 Supercritical Drying -- 4.2.3.2 Ambient Pressure Drying -- 4.2.3.3 Freeze Drying -- 4.2.3.4 Other Drying Methods -- 4.2.4 Combination of a Polymer Aerogel with Another Component -- 4.3 Several Common Polymer Aerogels and Their Composites -- 4.3.1 Polyimide-Based Aerogels -- 4.3.1.1 Polyimide-BasedAerogels Combined with Carbon Materials -- 4.3.1.2 Cellulose/Polyimide Composite Aerogels -- 4.3.1.3 Polyimide-BasedAerogels Combined with Inorganic Materials -- 4.3.2 Poly(Vinyl Alcohol)-Based Aerogels -- 4.3.2.1 PVA-BasedAerogels Combined with Carbon Materials -- 4.3.2.2 Cellulose/PVA Composite Aerogels -- 4.3.2.3 PVA-BasedAerogels Combined with Inorganic Materials -- 4.3.2.4 PVA-BasedAerogels Combined with Hybrid Materials -- 4.3.3 Phenolic Resin-Based Aerogels -- 4.3.3.1 Phenolic Resin-BasedAerogel Composites -- 4.4 Applications of Polymer Aerogel Composites -- 4.4.1 Absorption -- 4.4.2 Thermal Insulation -- 4.4.3 Flame Retardant Materials -- 4.4.4 Sensing -- 4.4.5 Electromagnetic Interference Shielding -- 4.5 Conclusions and Outlook -- References -- Chapter 5 Epoxide Related Aerogels -- Sol-Gel Synthesis, Property Studies and Energy Applications -- 5.1 Overview of Epoxide Aerogels -- 5.1.1 History of Aerogels -- 5.1.2 Advantages of Epoxide-Assisted Approach -- 5.2 Synthesis and Drying Technique -- 5.2.1 Metal Salt Precursors for Aerogels -- 5.2.1.1 Selection of Precursors -- 5.2.1.2 Choice of Solvents -- 5.2.2 Hydrolysis -- 5.2.2.1 Hydrolysis in Aqueous Media: Formation of Hydroxo/Oxo Ligands -- 5.2.2.2 Hydrolysis in Organic Solvents -- 5.2.3 Epoxide-Assisted Gelation and Condensation -- 5.2.3.1 Olation Condensation -- 5.2.3.2 Oxolation Condensation.
  • 5.2.4 Gel Drying -- 5.2.4.1 Supercritical Drying (SCD) -- 5.2.4.2 Freeze Drying -- 5.2.4.3 Ambient Pressure Drying -- 5.3 Epoxide-assisted Aerogels -- 5.3.1 Metal Oxides -- 5.3.1.1 Alumina Aerogels -- 5.3.1.2 Titania Aerogels -- 5.3.1.3 Vanadia Aerogels -- 5.3.1.4 Zirconia Aerogels -- 5.3.1.5 Other Oxide Aerogels -- 5.3.2 Composites Aerogels -- 5.3.2.1 Inorganic-inorganicComposites -- 5.3.2.2 Inorganic-OrganicComposites -- 5.4 Aerogels Properties and Characterization -- 5.4.1 Structural Characterization -- 5.4.1.1 X-rayDiffraction -- 5.4.1.2 Electron Microscopy -- 5.4.1.3 Infrared Spectroscopy -- 5.4.2 Mechanical Characterization -- 5.5 Some Applications and Examples -- 5.5.1 Catalysis -- 5.5.2 Solid Fuel Cell -- 5.5.3 Water Treatment -- 5.5.4 Biodiesel Production -- 5.5.5 Energy Conversion and Storage Applications -- 5.6 Summary -- References -- Chapter 6 CNT-Based Aerogels and Their Applications -- 6.1 Introduction -- 6.2 The Fundamental Principle of Preparing CNT-based Aerogels -- 6.3 Strategies for Preparation of CNT-based Aerogels -- 6.3.1 Preparation of CNT-based Aerogels via CVD -- 6.3.1.1 Isotropic CNT Aerogels -- 6.3.1.2 3D Vertical CNT Arrays -- 6.3.1.3 Template-assistedCNT-basedAerogels -- 6.3.2 Surface-modified CNT-based Aerogels -- 6.3.2.1 Preparation of Aerogels with Noncovalent Modified CNTs -- 6.3.2.2 Preparation of Aerogels with Covalent Modified CNTs -- 6.3.3 CNT Doping in 3D Aerogels -- 6.3.4 CNT/Inorganic Nanocrystal Composite Aerogels -- 6.4 Applications -- 6.4.1 Water Treatment -- 6.4.2 Energy Storage and Conversion -- 6.4.3 Catalysts -- 6.5 Conclusions and Perspectives -- References -- Chapter 7 Silica-Based Aerogels for Building Transparent Components -- 7.1 Introduction -- 7.2 Silica Aerogels Production -- 7.2.1 Preparation Steps -- 7.2.1.1 Precursors -- 7.2.1.2 Gel Preparation -- 7.2.1.3 Aging -- 7.2.1.4 Drying.
  • 7.2.1.1 Precursors -- 7.2.2 Rapid Extraction Methods -- 7.3 Silica Aerogel Properties -- 7.3.1 Mechanical Properties -- 7.3.2 Thermal Properties -- 7.3.3 Optical Properties -- 7.3.4 Acoustic Properties -- 7.4 Energy Performance of Silica Aerogels in Buildings -- 7.4.1 Energy Performance of Monolithic Aerogel Glazing Systems -- 7.4.2 Energy Performance of Granular Aerogel Glazing Systems -- 7.5 Applications -- 7.6 Conclusions -- 7.7 Outlook -- References -- Chapter 8 Inorganic Aerogels and Their Composites for Thermal Insulation in White Goods -- 8.1 Introduction -- 8.1.1 Energy Consumption in White Goods -- 8.1.2 Aerogels -- 8.1.2.1 Synthesis of Aerogels -- 8.1.2.2 Classification of Aerogels -- 8.1.2.3 Forms of Aerogels -- 8.2 Heat Transfer Mechanisms in Aerogels -- 8.2.1 Solid Thermal Conductivity -- 8.2.2 Gaseous Thermal Conductivity -- 8.2.3 Radiative Thermal Conductivity -- 8.2.3.1 Approximations Neglecting Some Physical Process -- 8.2.3.2 Optically Thin Approximation Optically -- 8.2.3.3 Optically Thick Approximation -- 8.2.3.4 Two Flux Method -- 8.2.3.5 Discrete Ordinate Method -- 8.3 Inorganic Aerogels and Their Composites in White Goods -- 8.3.1 Refrigerators -- 8.3.1.1 Thermal Insulation in Refrigerators -- 8.3.1.2 Aerogels for Vacuum Insulation Panels -- 8.3.1.3 Aerogel Blankets for Refrigerators -- 8.3.1.4 Monolithic Aerogels for Refrigerators -- 8.3.1.5 Aerogel Polyurethane Composites -- 8.3.2 Ovens -- 8.3.2.1 Thermal Insulation in Ovens -- 8.3.2.2 Aerogel Blankets for Ovens -- 8.3.2.3 Monolithic Aerogel Panels -- 8.4 Conclusions -- References -- Chapter 9 Natural Polymer-Based Aerogels for Filtration Applications -- 9.1 Introduction -- 9.2 Material Option for the Preparation of Aerogel -- 9.2.1 Synthetic Polymers -- 9.2.2 Biopolymers-Based Aerogels -- 9.3 Application of Aerogels in Water Purification -- 9.3.1 Organic Molecule Separation.
  • 9.3.2 Organic Solvent Separation.
  • Description based on publisher supplied metadata and other sources.
Sprache
Identifikatoren
ISBN: 9781119717621
Titel-ID: 9925200164706463
Format
1 online resource (545 pages)