Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 6429

Details

Autor(en) / Beteiligte
Titel
First and Second Order Circuits and Equations : Technical Background and Insights
Auflage
1st ed
Ort / Verlag
Newark : John Wiley & Sons, Incorporated,
Erscheinungsjahr
2024
Link zum Volltext
Beschreibungen/Notizen
  • Cover -- Title Page -- Copyright -- Contents -- About the Author -- Acknowledgments -- Part 1 Circuit Elements and Resistive Circuits -- Chapter 1 Ohm's Law, Branch Relationships, and Sources -- 1.1 Chapter Summary and Polarity Reference -- 1.1.1 Chapter Summary -- 1.1.1.1 Ohm's Law -- 1.1.1.2 Branch Relationships -- 1.1.2 Polarity Reference -- 1.1.2.1 DC Voltage Source Polarity Example -- 1.1.2.2 DC Current Source Polarity Example -- 1.1.2.3 Reference Polarity versus Physical Current Flow Direction -- 1.2 Branch Relationships and I-V Characteristics -- 1.2.1 Circuit Element Branch Relationships -- 1.2.1.1 Ohm's Law is a Resistor's Branch Relationship -- 1.2.1.2 Capacitor and Inductor Branch Relationships -- 1.2.2 I-V Characteristic Plots -- 1.2.2.1 I-V Characteristics for Circuit Elements -- 1.2.2.2 Resistor I-V Characteristic -- 1.2.2.3 Non‐resistor I-V Example -- 1.2.3 Circuit Elements Models and Schematic Symbols -- 1.2.3.1 Circuit Elements are Model Descriptions and Schematic Symbols -- 1.2.3.2 Circuit Schematic Symbols -- 1.3 Ohm's Law, Resistance, and Resistors -- 1.3.1 Resistor and Conductor Equations -- 1.3.1.1 Resistors -- 1.3.1.2 Ohm's Law -- 1.3.1.3 Ohm's Law Notation with Time‐Dependent Functions -- 1.3.2 Impedance and Ohm's Law Beyond Resistive Circuits -- 1.3.3 Resistance and Bulk Resistivity -- 1.3.3.1 Bulk Resistivity and Resistance -- 1.4 Current, Voltage, and Sources Overview -- 1.4.1 Description and Units of Current and Voltage -- 1.4.2 Current and Voltage Source Definitions -- 1.4.3 Current and Voltage Source Branch Relationships -- 1.5 Voltage Sources -- 1.5.1 Independent Voltage Source Schematic symbols -- 1.5.2 Independent Voltage Source Branch Relationship (I−V Characteristic) -- 1.5.3 Intuitive Description of an Independent Voltage Source -- 1.6 Current and Current Sources -- 1.6.1 Electrical Current.
  • 1.6.1.1 Description and Definition of Electrical Current -- 1.6.1.2 Units of Current and Charge -- 1.6.1.3 Positive Current Convention -- 1.6.2 Current Sources -- 1.6.2.1 Independent Current Source Definition -- 1.6.2.2 Alternative Independent Current Source Schematic Symbol -- 1.6.2.3 Current Source Water Analogy -- 1.6.2.4 Current Sources Can't Be Open Circuit -- 1.6.3 Current Source Branch Relationship (I-V Characteristic) -- Chapter 2 Kirchhoff's Laws and Resistive Dividers -- 2.1 Kirchhoff's Laws and Dividers Comparison Summary -- 2.2 Kirchhoff's Laws Physical Analogies -- 2.2.1 Kirchhoff's Voltage Law - Gravitational (Elevation) Analogy -- 2.2.1.1 Voltage Doesn't Accumulate Around a Loop -- 2.2.2 Kirchhoff's Current Law - Water Analogy -- 2.2.2.1 Current Doesn't Accumulate in a Node -- 2.2.2.2 Water and Current Flow in a Loop -- 2.3 Source Polarity in KVL - Time and Frequency Domains -- 2.3.1 DC Source Polarity and Kirchhoff's Voltage Law -- 2.3.1.1 Positive Current Convention Distinction -- 2.3.2 Time Domain Current Source Reference Polarity Example -- 2.3.2.1 Circuit Simulation Results -- 2.3.3 Time Domain Voltage Source Reference Polarity Example -- 2.3.3.1 Circuit Simulation Results - Time Domain Voltage Source -- 2.3.4 Frequency Domain Current Source Reference Polarity Example -- 2.3.4.1 Circuit Simulation Results - Frequency Domain Current Source -- 2.3.5 Frequency Domain Voltage Source Reference Polarity Example -- 2.3.5.1 Circuit Simulation Results - Frequency Domain Voltage Source -- 2.4 Formulae Summary for Resistors in Series and Parallel -- 2.5 Resistors in Series -- 2.5.1 Derivation of the Formulae for Two Resistors in Series -- 2.5.2 n Resistors in Series -- 2.5.3 Conductors in Series -- 2.5.3.1 Admittance is the Inverse of Impedance -- 2.5.3.2 First Derivation of the Formula for the Conductance of Two Resistors in Series.
  • 2.5.3.3 Second Derivation of the Formula for the Conductance of Two Resistors in Series -- 2.5.4 Impedances in Series -- 2.5.4.1 Impedance Z in Either s or jω Frequency Domains -- 2.5.4.2 Susceptance B -- 2.6 Voltage Dividers -- 2.6.1 Calculation of the Voltage Divider Output Voltage vout -- 2.6.2 Voltage Divider for Generalized Impedance -- 2.7 Parallel Circuit Element Formulae -- 2.7.1 Derivation of the Formulae for Two Resistors in Parallel -- 2.7.2 Derivation of the Formula for n Resistors in Parallel -- 2.7.3 Conductance in Parallel -- 2.7.3.1 Admittance in Parallel -- 2.7.4 Impedance in Parallel -- 2.8 Current Dividers -- 2.8.1 Derivation of Current Divider Formula for Two Resistors -- 2.8.1.1 Current Divider Formulae -- 2.8.2 Alternate Derivation of Current Divider Formula -- 2.8.2.1 Current Divider Formula -- 2.8.3 The Current Divider Formula Generalizes to Impedances -- 2.8.3.1 Current Divider Formulae -- 2.9 Current and Voltage Intuitions -- 2.9.1 Only One Current in a Series Circuit -- 2.9.2 Only One Voltage in a Parallel Circuit -- Chapter 3 Opamp Models and Resistive Circuits -- 3.1 Introduction and Ideal Opamp Model Results Overview -- 3.1.1 Ideal Opamp Inverting Amplifier Circuit Results Summary -- 3.1.1.1 Ideal Opamp Non‐Inverting Amplifier Results Summary -- 3.1.2 Opamp Models -- 3.1.2.1 Standard Opamp Model -- 3.1.2.2 Voltage‐Controlled Voltage Source Opamp Model -- 3.1.2.3 Ideal Opamp Model -- 3.2 Ideal Opamp Resistive Amplifier Circuits -- 3.2.1 Inverting Amplifier Circuit Ideal Opamp Analysis -- 3.2.2 Non‐Inverting Amplifier Circuit Ideal Opamp Analysis -- Chapter 4 Reactive Circuit Elements -- 4.1 Capacitor and Inductor Comparison Summary -- 4.2 Capacitors -- 4.2.1 The Capacitor Circuit Element -- 4.2.1.1 Capacitor Branch Relationships -- 4.2.2 Capacitors in Series and Parallel -- 4.2.2.1 Parallel Capacitances.
  • 4.2.2.2 Intuitive Memory Aid for Parallel Capacitance -- 4.2.2.3 Capacitor Series Connections -- 4.2.2.4 Intuitive Memory Aid for Series Capacitance -- 4.2.3 Capacitor Time Domain Behavior -- 4.2.3.1 Hydraulic Analogy for Capacitance -- 4.2.4 Capacitor Voltage Phase Lags Current Phase -- 4.3 Inductors -- 4.3.1 The Inductor Circuit Element -- 4.3.1.1 Inductor Branch Relationships -- 4.3.2 Inductors in Series and Parallel -- 4.3.2.1 Inductor Series Connections -- 4.3.2.2 Intuitive Memory Aid -- 4.3.2.3 Inductor Parallel Connections -- 4.3.3 Inductor Time Domain Behavior -- 4.3.3.1 Hydraulic Analogy for Inductance -- 4.3.4 Time and Frequency - Inductor Voltage Phase Leads Current Phase -- Part 2 First‐Order Circuits -- Chapter 5 First‐Order RC and RL Circuits Introduction -- 5.1 What are First‐Order Circuits? -- 5.1.1 A Capacitor or an Inductor Makes a First‐Order Circuit -- 5.1.2 First‐Order Circuits Can Filter in the Frequency Domain -- 5.1.3 First‐Order Circuits Are Described by First‐Order Differential Equations -- 5.1.4 First‐Order Circuit Exponential Step Responses in Time Domain -- 5.2 Intuitive First‐Order Circuit Frequency Domain Examples -- 5.3 First‐Order Natural and Step Response Overview -- 5.3.1 First‐Order RC and RL Natural Response -- 5.3.2 Intuitive Analysis of First‐Order RC and RL Step Response -- Chapter 6 First‐Order Frequency Domain Response -- 6.1 First‐Order Frequency Response Overview -- 6.1.1 Frequency Response Notations and Complex Magnitude -- 6.1.1.1 Complex Magnitude -- 6.1.2 Frequency Domain Transfer Function Magnitude Bode Plots -- 6.1.3 Frequency Domain Transfer Function Phase Calculation -- 6.1.4 Frequency Domain Response Topology Examples -- 6.1.5 First‐Order Frequency Response Formulae with ω0 -- 6.1.6 First‐Order Corner Frequency and Half‐Power Calculations -- 6.2 Series RC High‐pass Filter Frequency Response.
  • 6.2.1 Series RC Frequency Domain Results Overview -- 6.2.2 Series RC Frequency Domain Example Intuitive Analysis -- 6.2.2.1 Lead Network -- 6.2.3 Series RC Frequency Domain Transfer Function Calculation -- 6.2.3.1 Calculating the Transfer Function -- 6.2.4 Series RC Transfer Function Magnitude Calculation -- 6.2.4.1 Transfer Function Magnitude at the Corner Frequency -- 6.2.4.2 Alternate Form of Magnitude of the Transfer Function -- 6.2.5 Series RC Magnitude Bode Diagram Calculation -- 6.2.6 Series RC Magnitude Bode Diagram Plot -- 6.2.6.1 Calculate the High‐Frequency 0 dB Asymptote -- 6.2.6.2 Plot the High‐Frequency 0 dB Asymptote -- 6.2.6.3 Calculate the Low‐Frequency Asymptote -- 6.2.6.4 Plot the Low‐Frequency Asymptote -- 6.2.6.5 20 dB per Decade Roll Up Illustration -- 6.2.6.6 Corner Frequency -- 6.2.6.7 Transfer Function dB Magnitude at the Corner Frequency -- 6.2.7 Series RC Transfer Function Phase Calculation -- 6.2.7.1 Calculating the Phase Response of a Complex Transfer Function -- 6.2.8 Series RC Phase Bode Diagram Calculation -- 6.2.8.1 Phase as ω Approaches 0 -- 6.2.8.2 Phase as ω Approaches Infinity -- 6.2.8.3 Phase at Corner (Break) Frequency ω &amp -- equals -- ω0 &amp -- equals -- 1/RC -- 6.2.9 Series RC Phase Bode Diagram Plot -- 6.2.10 Series RC High‐pass Filter Phase Relationships -- 6.2.10.1 Phasor Diagram at Corner Frequency -- 6.3 Series RL Low‐pass Filter Frequency Response -- 6.3.1 Series RL Frequency Domain Results Overview -- 6.3.2 Series RL Frequency Domain Example Intuitive Analysis -- 6.3.2.1 Lag Network -- 6.3.3 Series RL Frequency Domain Transfer Function Calculation -- 6.3.3.1 Calculating the Transfer Function VoutVS -- 6.3.3.2 Calculating the Magnitude of the Transfer Function - Summarized -- 6.3.3.3 Phase of the RL Low‐pass Filter Transfer Function.
  • 6.3.3.4 Calculating the Phase of the Transfer Function - Summarized.
  • Description based on publisher supplied metadata and other sources.
Sprache
Identifikatoren
ISBN: 1-119-91356-X, 1-119-91354-3
Titel-ID: 9925195628406463
Format
1 online resource (355 pages)