Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 23 von 4313
Ferroic Materials-Based Technologies
1st ed, 2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Ferroic Materials-Based Technologies
Auflage
1st ed
Ort / Verlag
Newark : John Wiley & Sons, Incorporated,
Erscheinungsjahr
2024
Beschreibungen/Notizen
  • Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Ferroic Materials: From Past to Present -- 1.1 Introduction -- 1.2 Types of Ferroic Materials -- 1.2.1 Ferromagnetic Materials -- 1.2.1.1 Past of Ferromagnetic Materials -- 1.2.1.2 Present of Ferromagnetic Materials -- 1.2.2 Ferroelectric Materials -- 1.2.2.1 Past of Ferroelectric Materials -- 1.2.2.2 Present of Ferroelectric Materials -- 1.2.3 Ferroelastic Materials -- 1.2.3.1 Past of Ferroelastic Materials -- 1.2.3.2 Present of Ferroelastic Materials -- 1.2.4 Multiferroic Materials -- 1.2.4.1 Past of Multiferroic Materials -- 1.2.4.2 Present of Multiferroic Materials -- 1.3 Conclusion -- References -- Chapter 2 An Overview of Ferroic Materials -- 2.1 Introduction -- 2.2 Types of Ferroic Materials -- 2.2.1 Primary Ferroics -- 2.2.1.1 Ferromagnetic Materials -- 2.2.1.2 Ferroelectric Materials -- 2.2.1.3 Ferroelastic Materials -- 2.2.2 Secondary Ferroics -- 2.2.2.1 Multiferroics -- 2.2.2.2 Ferroelastoelectric Materials -- 2.2.2.3 Ferromagnetoelastic Materials -- 2.2.2.4 Ferromagnetoelectric Materials -- 2.3 Past of Ferroic Materials -- 2.3.1 Discovery of Magnetism and Electricity -- 2.3.2 Discovery of Ferromagnetism -- 2.3.3 Discovery of Ferroelectricity -- 2.3.4 Discovery of Ferroelasticity -- 2.4 Present of Ferroic Materials -- 2.5 Properties of Ferroic Materials -- 2.6 Scaling of Properties -- 2.7 Recent Advances in Ferroic Materials -- 2.8 Conclusion -- References -- Chapter 3 Future Perspectives of Ferroic/Multiferroic Materials -- 3.1 Introduction -- 3.2 Ferroic and Multiferroic Materials and Types -- 3.2.1 Ferroic Materials -- 3.2.2 Multiferroic Materials -- 3.3 Emerging Ferroic and Multiferroic Materials -- 3.3.1 Introduction to Emerging Ferroic and Multiferroic Materials -- 3.3.2 Examples of Emerging Ferroic and Multiferroic Materials.
  • 3.4 Introduction to Advances in Characterization Techniques of Ferroic/Multiferroic Materials -- 3.4.1 Scanning Probe Microscopy -- 3.4.2 X-Ray Diffraction and Scattering -- 3.4.3 Neutron Scattering -- 3.4.4 Raman Spectroscopy -- 3.5 Applications -- 3.5.1 Magnetoelectric Devices -- 3.5.2 Multiferroic Microwave Phase Shifter -- 3.5.3 Multiferroic Magnetic Recording Read Heads -- 3.5.4 Multi-State Memories and Multiferroic Random Access Memories -- 3.5.5 Photovoltaic Multiferroic Solar Cells -- 3.6 Challenges and Future Directions for Ferroic and Multiferroic Materials -- 3.6.1 Stability and Reliability -- 3.6.2 Integration with Existing Technologies -- 3.6.3 Scalability -- 3.6.4 Novel Applications -- 3.7 Integration of Ferroic and Multiferroic Materials into Current Technology -- 3.7.1 Integration of Multiferroic Materials into Memory Devices -- 3.7.2 Integration of Ferroelectric Materials into Energy Harvesting Devices -- 3.7.3 Integration of Ferroelectric Materials into Sensors -- 3.7.4 Integration of Ferromagnetic Materials into Spintronic Devices -- 3.7.5 Integration of Multiferroic Materials into Microwave Devices -- 3.8 Conclusion -- References -- Chapter 4 Basic Principles and Measurement Techniques of Electrocaloric Effect in Ferroelectric Materials -- 4.1 Introduction -- 4.2 Electrocaloric Effect (ECE) -- 4.2.1 Brief History of ECE -- 4.2.2 Working Principle -- 4.2.3 Theory -- 4.2.3.1 Maxwell Approach -- 4.2.3.2 Landau Phenomenological Approach -- 4.3 Direct and Indirect Measurement Techniques -- 4.3.1 Direct Methods for Measurement of ECE -- 4.3.1.1 Differential Scanning Calorimetry (DSC) -- 4.3.1.2 Fast Infrared Photometry -- 4.3.1.3 Scanning Thermal Microscopy (SThM) -- 4.3.2 Indirect Method -- 4.4 Electrocaloric Effect in Ferroelectric Materials -- 4.4.1 Lead-Based Ferroelectric Materials -- 4.4.1.1 PZT-Based Normal Ferroelectrics.
  • 4.4.1.2 Pb(Mg1/3Nb2/3)O3- PbTiO3 (PMN-PT) Relaxor Ferroelectrics -- 4.4.2 Lead-Free Ferroelectric Materials -- 4.4.2.1 BaTiO3-Based Ceramics -- 4.4.2.2 Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 (BCZT)-Based Ferroelectrics -- 4.4.2.3 (K, Na) NbO3 (KNN)-Based Ceramics -- 4.4.2.4 Hafnia and Zirconia-Based Ferroelectric Thin Films -- 4.5 Summary -- References -- Chapter 5 Ferroelectric/Ferroelastoelectric Materials: Preparation, Improvement, and Characterizations -- 5.1 Introduction -- 5.2 Structure and Properties of Ferroelectric and Ferroelastoelectric Materials -- 5.3 Synthesis Methods for Ferroelectric and Ferroelastoelectric Materials -- 5.3.1 Solid-State Reactions -- 5.3.2 Sol-Gel Techniques -- 5.3.3 Hydrothermal Synthesis -- 5.3.4 Chemical Vapor Deposition (CVD) -- 5.3.5 Electrochemical Deposition -- 5.3.6 Pulsed Laser Deposition -- 5.3.7 Molecular Beam Epitaxy -- 5.4 Improvement of Ferroelectric and Ferroelastoelectric Materials -- 5.5 Applications of Ferroelectric and Ferroelastoelectric Materials -- References -- Chapter 6 Elastocaloric Effect in Ferroelectric Materials -- 6.1 Introduction -- 6.1.1 Elastocaloric Effect -- 6.1.1.1 Types of Elastocaloric Effect -- 6.1.2 Force Elasticity and Entropy Elasticity -- 6.1.2.1 Force Elasticity -- 6.1.2.2 Entropy Elasticity -- 6.1.2.3 Relationship between Force Elasticity and Entropy Elasticity -- 6.1.3 Entropy Elastic Stress and Strain Actions for Solid-State Cooling -- 6.1.3.1 Basics of Solid-State Cooling -- 6.1.3.2 Overview of Entropy-Elastic Materials for Cooling -- 6.1.3.3 Entropy and Thermoelectric Performance -- 6.1.3.4 Elastic Stress and Strain Behavior -- 6.1.3.5 Properties and Characteristics of Entropy-Elastic Materials -- 6.1.3.6 Potential Applications of Entropy-Elastic Materials in Cooling Technologies -- 6.2 Ferroelectric Materials -- 6.2.1 Introduction to Ferroelectric Materials.
  • 6.2.1.1 Definition and Characteristics of Ferroelectric Materials -- 6.2.2 Historical Overview -- 6.2.3 Structure and Properties of Ferroelectric Materials -- 6.2.4 Types of Ferroelectric Materials -- 6.2.5 Applications of Ferroelectric Materials -- 6.3 Performance Indicators -- 6.3.1 Elastocaloric Effect (ΔT) -- 6.3.2 Specific Heat Capacity -- 6.3.3 Endurance Limit -- 6.3.4 Inversion Temperature -- 6.3.5 Coefficient of Performance (COP) -- 6.3.6 Other Important Parameters -- 6.4 Challenges and Future Potential -- 6.5 Sustainability and Environmental Impact -- 6.6 Conclusions -- References -- Chapter 7 Effective Flexomagnetic/Flexoelectric Sensitivity in Ferroics/Nanosized Ferroic Materials -- 7.1 Introduction -- 7.2 Basic Mathematical Form for Flexoeffect Contribution in Ferroic Nanomaterials -- 7.3 Symmetry and Definition of the Flexoelectric Coupling -- 7.4 Symmetry and Definition of the Flexomagnetic Coupling -- 7.5 The Chapter Structure and Motivation -- 7.6 Flexocoupling Response in Ferroics -- 7.6.1 Response of Flexoelectric Coupling in Different Ferroics Having Lower and Cubic Symmetry -- 7.7 Flexomagnetic Behavior of Coupling in Ferroics Having Cubic Symmetry -- 7.8 Effective Flexoresponse -- 7.9 Flexoelectricity in Different Materials -- 7.9.1 Flexoelectricity in Biological Materials -- 7.9.2 Flexoelectricity in Liquid Crystal -- 7.9.3 Flexoelectricity in Semiconductors -- 7.10 Conclusion -- References -- Chapter 8 Advancements in Ferroic Thin Films, Multilayers, and Heterostructures -- 8.1 Ferroic Materials -- 8.1.1 Ferroic Thin Films -- 8.1.1.1 Historical Developments of Ferromagnetic Thin Films -- 8.1.1.2 Historical Developments of Ferroelectric Thin Films -- 8.1.1.3 Importance of Thin Films in Ferroic Materials -- 8.1.1.4 Properties of Thin Films in Ferroic Materials -- 8.1.1.5 Recent Research on New Ferroic Thin Film Materials.
  • 8.1.1.6 Characterization Methods for Ferroic Thin Films -- 8.1.2 Ferroic Multilayers -- 8.1.2.1 History of Ferroic Multilayers -- 8.1.2.2 Importance of Ferroic Multilayers -- 8.1.2.3 Properties of Ferroic Multilayers -- 8.1.2.4 Advances in Ferroic Multilayers -- 8.1.2.5 Recent Research -- 8.1.2.6 Characterization Techniques -- 8.1.3 Heterostructures -- 8.1.3.1 Types of Ferroic Heterostructures -- 8.1.3.2 Historical Development -- 8.1.3.3 Properties of Heterostructures -- 8.1.3.4 Characterization Techniques -- 8.2 Conclusion -- References -- Chapter 9 Physics of Multiferroic Materials -- 9.1 Introduction -- 9.2 Origin of Ferromagnetism and Antiferromagnetism -- 9.3 Origin of Ferroelectric Materials -- 9.4 Historical Background and Present -- 9.5 Multiferroicity and Its Origin -- 9.6 Multiferroic Materials -- 9.7 Classification of Multiferroic Materials -- 9.7.1 Single-Phase Multiferroics -- 9.7.1.1 Type I Multiferroics -- 9.7.1.2 Type II Multiferroics -- 9.7.2 Composite Multiferroics -- 9.8 Applications of Multiferroics -- 9.9 Conclusion -- References -- Chapter 10 Overview of Comparison Between Primary Ferroic Crystals with Secondary Ferroic Crystals -- 10.1 Introduction -- 10.2 Formation of Ferroic Domains and Domain Boundaries -- 10.3 Description of Ferroelectricity-Phenomenological Way -- 10.3.1 Proper Ferroelectrics -- 10.3.2 Improper Ferroelectrics -- 10.3.3 Pseudo-Proper Ferroelectrics -- 10.4 Important Term in Primary Ferroics -- 10.4.1 Ferroelectric Materials -- 10.4.2 Ferromagnetic Materials -- 10.4.3 Ferroelastic Materials -- 10.4.4 Ferrotoroidic Materials -- 10.5 Multiferroics -- 10.5.1 Type 1 and Type 2 Multiferroics -- 10.6 Secondary Ferroics -- 10.6.1 Ferrobielectrics and Ferrobimagnetics-Secondary Ferroic Systems -- 10.6.1.1 Ferrobielectrics -- 10.6.1.2 Ferrobimagnetism -- 10.6.1.3 Ferroelastoelectricity -- 10.6.1.4 Ferrobielasticity.
  • 10.6.1.5 Ferromagnetoelectricity.
  • Description based on publisher supplied metadata and other sources.
Sprache
Identifikatoren
ISBN: 1-394-23819-3, 1-394-23818-5
Titel-ID: 9925191567606463
Format
1 online resource (350 pages)