Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 4518
First edition, [2024]
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
High Temperature Miniature Specimen Test Methods
Auflage
First edition
Ort / Verlag
Amsterdam, Netherlands : Elsevier Inc.,
Erscheinungsjahr
[2024]
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Front Cover -- High Temperature Miniature Specimen Test Methods -- High Temperature Miniature Specimen Test Methods -- Copyright -- Contents -- About the authors -- Foreword -- 1 - Introduction -- 1.1 Conventional creep test specimen requirements -- 1.1.1 Full-size cylindrical uniaxial specimen test -- 1.1.2 Subsize cylindrical uniaxial specimen test -- 1.2 Need to extract material properties from small volume of material -- 1.3 Requirements for material evaluation and structural integrity -- 1.3.1 General background -- 1.3.2 Fusion materials -- 1.3.3 Condition monitoring and life management -- 1.3.4 Gas turbine blades -- 1.4 Scope of the book -- References -- 2 - Basic material behavior models for creep and viscoplasticity -- 2.1 Introduction -- 2.2 Norton power law secondary creep model -- 2.2.1 The model -- 2.2.2 Estimating material constants -- 2.3 Creep damage mechanics models -- 2.3.1 The models -- 2.3.1.1 Kachanov creep damage model -- 2.3.1.2 Liu and Murakami creep damage model -- 2.3.1.3 Three-parameter creep damage (Dyson) model -- 2.3.2 Estimating material constants -- 2.3.2.1 Experimental data -- 2.3.2.2 Parameter identification -- 2.3.2.3 Model calibration -- 2.4 Unified viscoplasticity model -- 2.4.1 The basic model -- 2.4.2 Estimating material constants -- 2.4.2.1 Experimental data -- 2.4.2.2 Parameter identification -- 2.4.2.3 Model calibration -- 2.5 Other models -- Nomenclature -- References -- Further reading -- 3 - Small punch test -- 3.1 Background and test standards -- 3.1.1 Background -- 3.1.2 Test standards -- 3.2 Small punch tensile test -- 3.2.1 Data interpretation method -- 3.2.1.1 Force-deflection curve parameters -- 3.2.1.2 Empirical correlations of yield stress and ultimate tensile strength -- 3.2.1.3 Determination of Fe -- 3.2.2 Typical test data -- 3.3 Small punch creep test -- 3.3.1 Data interpretation method.
  • 3.3.2 Typical test data -- 3.4 Practical applications, complexities, and limitations -- 3.4.1 Practical applications -- 3.4.2 Complexities -- 3.4.2.1 Stress states -- 3.4.2.2 Effect of friction -- 3.4.2.3 Effect of initial plasticity straining -- 3.4.2.4 Effect of clamping and constant volume -- 3.4.3 Limitations -- Nomenclature -- Appendix 3.1 Summary of Chakrabarty's membrane stretching theory -- Appendix 3.2 Cone model for equivalent stress and punch displacement -- Appendix 3.3 Membrane stretching-based creep damage analytical solutions -- A3.3.1 Creep damage constitutive equations -- A3.3.2 Stresses -- A3.3.3 Creep damage evolution and failure life -- A3.3.4 Punch displacement and minimum displacement rate -- Strain energy formulations -- Punch displacement-time solution -- Minimum displacement rate -- References -- 4 - Impression creep test with a rectangular indenter -- 4.1 Background -- 4.2 Data interpretation method -- 4.2.1 Data conversion of impression creep test -- 4.2.2 Reference stress method -- 4.2.3 Use of rectangular indenter -- 4.2.4 Determination of conversion parameters -- 4.3 Typical test data -- 4.3.1 Constant-load and constant-temperature test -- 4.3.1.1 Tests with "standard" specimen size -- 4.3.1.2 Tests with different specimen sizes -- 4.3.2 Stepped-load and stepped-temperature tests -- 4.3.2.1 Iso-thermos stepped-load tests -- 4.3.2.2 Iso-stress stepped-temperature tests -- 4.4 Conversion parameter corrections -- 4.4.1 Correction for indentation depth -- 4.4.1.1 Conversion parameters -- 4.4.1.2 Corrections -- 4.4.2 Correction for loading misalignment -- 4.4.2.1 Effect of angle ϕ -- 4.4.2.2 Effect of angle ψ -- 4.4.2.3 Effect of angle θ -- 4.4.2.4 Effect of combined angles θ and ψ -- 4.4.2.5 Corrections -- 4.5 Comments on applicability and limitations -- 4.5.1 Material evaluation -- 4.5.1.1 Correlation with hardness data.
  • 4.5.1.2 Monkman-Grant assessment -- 4.5.2 Limitations -- 4.5.3 Ongoing EU CEN standard -- 4.6 Concluding summary -- Nomenclature -- Appendix 4.1 A theoretical analysis of a two-material impression specimen -- Motivation -- General formulation for steady-state creep deformation -- Application of the general formulation to a two-material case -- Numerical solutions and verification -- Specific case with nA=nB (hA=hB) -- General case with nA ≠ nB (hA=hB) -- Comments on practical applications -- References -- 5 - Indentation creep test with a spherical indenter -- 5.1 Background -- 5.2 Steady-state creep analysis and data conversion -- 5.2.1 Quasi-steady-state behavior -- 5.2.2 Stress analysis methods -- 5.2.2.1 Analytical analysis -- 5.2.2.2 Finite element analysis -- 5.2.3 Approximate data conversion methods -- 5.2.3.1 Equivalent stress-equivalent strain method -- 5.2.3.2 Finite element principal stresses-based method -- 5.2.3.3 Modified reference area method -- 5.3 Data conversion using modified reference area -- 5.3.1 Method -- 5.3.2 Creep data for Cr5Mo steel at 550°C -- 5.3.3 Reference area and steady-state creep rate -- 5.4 Practical issues -- 5.4.1 Applications -- 5.4.2 Advantages -- 5.4.3 Limitations -- 5.4.4 Other issues -- Nomenclature -- References -- Further reading -- 6 - Small ring-type specimen creep tests -- 6.1 Background -- 6.2 Small circular and elliptical ring creep tests -- 6.2.1 Data interpretation method -- 6.2.1.1 Theoretical analysis -- 6.2.1.2 Determination of conversion parameters -- 6.2.1.3 Equivalent gauge lengths -- 6.2.2 Typical test data -- 6.2.2.1 Experimental method -- 6.2.2.2 Test data of circular ring for P91 steel at 650°C -- 6.3 Small C-shaped ring creep test -- 6.3.1 Data interpretation method -- 6.3.1.1 Theoretical analysis -- 6.3.1.2 Determination of conversion parameters -- 6.3.1.3 Equivalent gauge length.
  • 6.3.2 Typical test data -- 6.3.2.1 Specimen manufacture -- 6.3.2.2 Experimental method -- 6.3.2.3 Test data for 1.25Cr0.5MoSi steel at 500°C -- 6.4 Practical applications and limitations -- 6.4.1 Circular ring creep tests of an Inconel 738 turbine blade -- 6.4.1.1 Inconel 738 turbine blade -- 6.4.1.2 Specimen manufacture -- 6.4.1.3 Test results -- 6.4.2 Applicability and limitations -- Nomenclature -- Appendix 6.1 Relationship between bending stress and bending moment -- Appendix 6.2 Complementary strain energy for beam-type structures -- Appendix 6.3 Radial deformation of elliptical ring based on complementary strain energy -- Appendix 6.4 Approximate limit load for the circular ring -- Appendix 6.5 Correction due to geometric changes -- References -- 7 - Small two-bar specimen creep test -- 7.1 Background -- 7.2 Specimen design and analysis -- 7.2.1 Specimen design -- 7.2.2 Creep deformation analysis -- 7.2.2.1 Creep modeling -- 7.2.2.2 Finite element analysis -- 7.3 Data interpretation method -- 7.3.1 Mackenzie's reference stress method -- 7.3.2 Determination of conversion parameters -- 7.3.2.1 Equivalent gauge length -- 7.3.3 Effects of specimen dimension ratios -- 7.3.3.1 Effect of Lo/2R ratio -- 7.3.3.2 Effect of k/2R ratio -- 7.3.3.3 Effect of b/2R ratio -- 7.3.4 Evaluation of the testing technique -- 7.4 Experimental setup and typical test data -- 7.4.1 Specimen and loading setup -- 7.4.2 Typical test data -- 7.5 Applicability, advantages, and limitations -- 7.5.1 Comments and recommendations -- 7.5.2 Advantages and limitations -- 7.5.2.1 Advantages -- 7.5.2.2 Limitations -- Nomenclature -- References -- 8 - Miniature bending creep tests -- 8.1 Background -- 8.2 Data interpretation of three-point bending under steady-state creep -- 8.2.1 Analytical solutions under plane stress and plane strain conditions.
  • 8.2.1.1 Solutions under plane stress conditions -- 8.2.1.2 Solutions under plane strain conditions -- 8.2.2 Approximate empirical solution for 3-D plates -- 8.2.2.1 Finite element analyses -- 8.2.2.2 Two-dimensional plane stress and plane strain analyses -- 8.2.2.3 Empirical solutions between plane stress and plane strain -- Conversion relationships -- 8.3 Analytical creep damage solutions for the three-point bending beam -- 8.3.1 Introduction -- 8.3.2 Material models -- 8.3.3 Analytical solutions for the load-line displacement rate -- 8.3.4 Finite element calibration -- 8.4 Experimental testing and typical test data -- 8.4.1 Experimental procedure -- 8.4.2 Test data -- 8.5 Practical applications and limitations -- Nomenclature -- Appendix 8.1 Steady-state analytical solutions for the three-point bending beam -- A8.1.1 Plane stress conditions -- A8.1.2 Plane strain conditions -- Appendix 8.2 Critical creep displacement of three-point bending specimen with fixed constraints -- A8.2.1 Maximum displacement and rotation angle at the elastic stage -- A8.2.2 Maximum displacement and rotation angle at the steady-state creep stage -- A8.2.3 Critical creep displacement of three-point bending specimen with fixed constraints -- References -- 9 - Miniature thin-plate specimen tests -- 9.1 Background -- 9.2 Specimen design, testing, and data interpretation -- 9.2.1 Specimen design and data conversion -- 9.2.1.1 Data conversion for tensile test -- 9.2.1.2 Data conversion for creep test -- 9.2.2 Tensile test and creep test -- 9.2.3 Low cycle fatigue test -- 9.3 Typical test data -- 9.3.1 Tensile test -- 9.3.2 Creep test -- 9.3.2.1 P91 steel at 650°C -- 9.3.2.2 Effects of specimen thickness and temperature (P91 steel at 600°C) -- 9.3.3 Low cycle fatigue test -- 9.4 Practical issues and limitations -- Nomenclature.
  • Appendix 9.1 Simplified analytical solutions for a two-material specimen.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 0-443-21898-6
Titel-ID: 9925190768106463
Format
1 online resource (288 pages)
Schlagworte
Semiconductors, Electronic circuits