Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 23 von 11986

Details

Autor(en) / Beteiligte
Titel
Circular economy processes for CO2 capture and utilization : strategies and case studies
Auflage
1st ed
Ort / Verlag
Cambridge, MA : Woodhead Publishing,
Erscheinungsjahr
[2024]
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Intro -- Circular Economy Processes for CO2 Capture and Utilization: Strategies and Case Studies -- Copyright -- Contents -- Contributors -- Chapter 1: Introduction to strategies for implementing CO2 utilization in circular economy processes -- References -- Part I: Strategies for implementing CO2 capture and utilization in circular economy processes -- Chapter 2: CO2 capture for biogas upgrading using salts, hydroxides, and waste -- 2.1. Introduction -- 2.2. CO2 capture from biogas with caustic solvents -- 2.3. Salts for biogas upgrading -- 2.4. Waste valorization in CO2 capture -- 2.5. Biogas upgrading in a circular economy -- 2.6. Conclusions -- References -- Chapter 3: CO2 utilization for the circular heavy carbon industry -- 3.1. Introduction -- 3.2. Decarbonization of heavy carbon industries -- 3.2.1. Iron and steel -- 3.2.2. Cement -- 3.2.3. Chemicals -- 3.3. CO2 utilization strategies for circular economy in heavy carbon industries -- 3.3.1. Production of liquid and gaseous CO2 -- 3.3.2. Hydrogen production -- 3.3.3. Production of construction materials -- 3.3.4. Green fuels production -- 3.3.5. Green chemicals production -- 3.4. Conclusion and future perspectives -- References -- Chapter 4: Microbial electrochemical cells for CO2 utilization from alternative CO2 sources -- 4.1. Introduction -- 4.2. Basics of MES applied to CO2 utilization -- 4.2.1. Working principle of the MES system -- 4.2.2. Microbial communities attached to the biocathode in MES -- 4.2.3. Common electrodes employed in MES -- 4.3. Diverse bioproducts produced by MES via CO2 conversion -- 4.3.1. Acetate/acetic acid -- 4.3.2. Biomethane -- 4.3.3. Alcohols -- 4.3.4. Carboxylic acids -- 4.3.5. Bioplastics -- 4.4. Effect of electrode materials on product yield -- 4.4.1. Carbonaceous materials -- 4.4.2. Metal-based materials -- 4.4.3. Composites/coating of carbon materials.
  • 4.5. Conclusion -- 4.6. Future perspectives -- References -- Chapter 5: Catalytic processes for fuels production from CO2-rich streams: Opportunities for industrial flue gases upgrading -- 5.1. Background -- 5.2. Industrial processes emitting CO2-rich streams -- 5.2.1. CO2 capture technologies -- 5.2.1.1. Precombustion -- 5.2.1.2. Postcombustion -- 5.2.1.3. Oxyfuel combustion -- 5.2.2. Description of industrial CO2-emitting processes -- 5.2.2.1. Cement -- 5.2.2.2. Steel and iron -- 5.2.2.3. Biogas -- 5.2.2.4. Brewery -- 5.3. Impurities of industrial flue gases -- 5.3.1. Hydrogen sulfide/sulfur oxides -- 5.3.2. Nitrogen oxides -- 5.3.3. Water, nitrogen, and oxygen -- 5.4. Catalytic processes for CO2 utilization -- 5.4.1. Reforming of methane -- 5.4.2. Reverse water-gas shift -- 5.4.3. CO2 methanation -- 5.4.4. Methanol synthesis -- 5.5. Catalytic opportunities for making industries circular -- 5.6. Conclusions and final remarks -- References -- Chapter 6: Calcium looping for combined CO2 capture and thermochemical energy storage -- 6.1. Introduction -- 6.1.1. Thermochemical energy storage -- 6.1.2. Carbon capture via carbonation/calcination cycles -- 6.1.3. The combined process -- 6.2. Background: Calcium looping as a state-of-the-art solid cycle with two applications -- 6.2.1. Solid cycles for postcombustion CO2 capture -- 6.2.1.1. The use of CaO in postcombustion CO2 capture -- 6.2.2. Solid cycles for thermochemical energy storage -- 6.2.2.1. Carbonates and the calcium looping process -- 6.2.2.2. Other materials -- Sulfates -- Hydroxides -- Hydrides -- Oxides -- 6.3. The combined process-Calcium looping for integrated CO2 capture and energy storage -- 6.3.1. Charging section -- 6.3.2. Discharging section -- 6.3.3. Heat exchanger network -- 6.3.4. Plant sizing -- 6.3.5. Power block -- 6.3.6. Solid material -- 6.3.7. Solids handling.
  • 6.4. Key fronts in the technology development -- 6.4.1. Charging reactor -- 6.4.2. Economics -- 6.5. Conclusions -- References -- Chapter 7: CO2 capture by mineral carbonation of construction and industrial wastes -- 7.1. Introduction to construction waste panorama -- 7.1.1. General introduction -- 7.1.2. The case of construction and industrial waste -- 7.2. Main constituents of construction materials -- 7.2.1. Cement -- 7.2.2. Concrete -- 7.2.3. Recycled concrete aggregates (RCA) -- 7.2.4. Properties of RCA-based concrete -- 7.2.4.1. Properties of RCA-based concrete in a fresh state -- 7.2.4.2. Mechanical properties of RCA-based concrete in the hardened state -- 7.3. Mineral carbonation methods -- 7.3.1. In-situ mineral carbonation -- 7.3.2. Ex situ mineral carbonation -- 7.3.2.1. Direct carbonation -- Gas-solid carbonation -- Aqueous carbonation -- 7.3.2.2. Indirect mineral carbonation -- pH swing process -- Multi-stage gas-solid mineral carbonation -- 7.4. CO2 capture by mineral carbonation of construction waste -- 7.4.1. Transfer phenomena -- 7.4.2. Study of the influence of key parameters to the mineral carbonation process on construction wastes -- 7.4.2.1. Influence of the w/c ratio -- 7.4.2.2. Influence of the relative humidity -- 7.4.2.3. Influence of the pH -- 7.4.2.4. Influence of carbonation temperature -- 7.4.2.5. Influence of CO2 concentration -- 7.5. Conclusions and perspectives -- Acknowledgments -- References -- Chapter 8: Economics of processes involving CO2 in the circular economy -- 8.1. Introduction -- 8.2. Carbon-involved processes in the circular carbon economy -- 8.2.1. Circular carbon economy -- 8.2.2. CO2 capture technologies -- 8.2.3. CO2 utilization technologies -- 8.2.4. Transportation -- 8.2.5. Sequestration -- 8.3. Current applications -- 8.3.1. Enhanced oil refinery -- 8.3.2. CO2 to urea.
  • 8.3.3. CO2 to polycarbonate polyols -- 8.3.4. CO2 to methanol -- 8.3.5. Direct air capture -- 8.4. Future perspectives -- Acknowledgment -- References -- Chapter 9: The contribution of computational science to the circular carbon economy -- 9.1. Introduction -- 9.2. Computational science to Reduce carbon emissions -- 9.3. Computational science to Reuse and Recycle carbon dioxide -- 9.4. Computational science to Remove carbon dioxide -- 9.5. Conclusions -- References -- Part II: Case studies in CO2 capture and utilization in circular economy processes -- Chapter 10: Profitability analysis of biomethane and calcium carbonate co-production from biogas and FGD gypsum -- 10.1. Introduction -- 10.2. Methodology -- 10.2.1. Profitability model -- 10.2.2. Strategy for analysis -- 10.3. Results -- 10.4. Conclusions -- References -- Chapter 11: Microbial electrosynthesis for CO2-rich waste streams upgrading: Biogas upgrading case study -- 11.1. Introduction -- 11.2. Case study description: Using MES for biogas upgrading -- 11.3. Description of scenarios -- 11.3.1. Base scenario -- 11.3.2. Scenario 2 -- 11.3.3. Scenario 3 -- 11.3.4. Energetical parameters -- 11.4. Results and discussion -- 11.4.1. Scenario 1 -- 11.4.2. Scenario 2 -- 11.4.3. Scenario 3 -- 11.4.4. Scenario discussion -- 11.5. Conclusions -- Acknowledgments -- References -- Chapter 12: Methanation of unconventional flue gases -- 12.1. Introduction -- 12.2. Sabatier reaction: A possible route for CO2 valorization -- 12.3. Unconventional flue gas: Thermodynamic analysis for the Sabatier reaction in unconventional conditions -- 12.3.1. Thermodynamic analysis for ideal conditions -- 12.3.2. Thermodynamic analysis for unconventional conditions -- 12.4. Concluding remarks -- References -- Chapter 13: Biogas dry reforming for syngas production from CO2 -- 13.1. Introduction -- 13.2. Biogas production.
  • 13.3. Biogas sweetening -- 13.4. Biogas dry reforming -- 13.4.1. Thermodynamic considerations -- 13.4.2. Influence of active metal and supports on catalytic activity -- 13.4.3. Coke deposition and sintering -- 13.5. Conclusions -- References -- Chapter 14: Valorization of unconventional CO2-rich feedstock via Reverse Water Gas Shift reaction -- 14.1. Introduction -- 14.2. Nonconventional sources -- 14.2.1. Biogas -- 14.3. Reverse water gas shift reaction -- 14.3.1. Influence of impurities present in common biogas-derived feedstock -- 14.4. Case study: Valorization of CO2-rich feedstock in presence of CH4 -- 14.5. Overview and future perspective -- References -- Chapter 15: Sustainable Na2CO3 production from NaCl waste and CO2 sources using membrane technology -- 15.1. Introduction -- 15.2. Theoretical background on MD -- 15.2.1. Direct contact membrane distillation (DCMD) -- 15.2.2. Vacuum membrane distillation (VMD) -- 15.2.3. Air gap membrane distillation (AGMD) -- 15.2.4. Sweeping gas membrane distillation (SGMD) -- 15.3. Materials and methods -- 15.3.1. Materials -- 15.3.2. Experimental setup -- 15.3.3. Calculations -- 15.3.3.1. Permeate flux -- 15.3.3.2. Salt flux -- 15.3.3.3. Membrane rejection -- 15.3.4. Tests performed and experimental design -- 15.4. Results -- 15.5. Potential integration of Na2CO3 MD in industrial processes -- 15.6. Conclusion and future works -- Acknowledgments -- References -- Chapter 16: MgCO3 production from MgCl2 waste and CO2: A process design and economic approach -- 16.1. Introduction -- 16.2. Methodology -- 16.2.1. Experimental -- 16.2.1.1. Materials -- 16.2.1.2. Methods -- 16.2.1.3. Physicochemical characterization of final solid powders -- 16.2.2. Profitability analysis -- 16.2.2.1. Brief process modeling explanation -- 16.2.2.2. Economic model developed -- 16.3. Results -- 16.3.1. Experimental results.
  • 16.3.2. Profitability analysis.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 0-323-95669-6
Titel-ID: 9925190766206463