Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 161
Second edition, [2023]
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Advances in structural adhesive bonding
Auflage
Second edition
Ort / Verlag
Cambridge, MA : Elsevier Ltd.,
Erscheinungsjahr
[2023]
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Intro -- Advances in Structural Adhesive Bonding -- Copyright -- Contents -- Contributors -- Preface -- References -- Part One: Adhesive chemistries and formulations -- Chapter 1: Advances in epoxy adhesives -- 1.1. Introduction and history of epoxy adhesives -- 1.2. Major uses and important minor uses -- 1.3. Epoxy resins and epoxy functional raw materials, processes, and suppliers -- 1.3.1. Bisphenol glycidyl ether resins -- 1.3.2. Epoxy novolac resins -- 1.3.3. Glycidyl ether resins and diluents -- 1.3.4. Glycidyl amine resins -- 1.3.5. Glycidyl ester resins -- 1.3.6. Cycloaliphatic epoxy resins -- 1.3.7. Bio-based epoxy resins -- 1.3.8. Specialty epoxy resins -- 1.4. Curatives for epoxy resins and epoxy functional raw materials, processes, and suppliers -- 1.4.1. Aliphatic amines -- 1.4.2. Cycloaliphatic amines -- 1.4.3. Aliphatic polyetheramines -- 1.4.4. Aromatic amines -- 1.4.5. Bio-based amines -- 1.4.6. Thiols -- 1.4.7. Anhydrides -- 1.4.8. Latent curatives -- 1.5. Accelerators and catalysts -- 1.5.1. Amine accelerators -- 1.5.2. Boron trifluoride catalysts -- 1.5.3. Photoinitiation catalysts -- 1.5.4. Ionic liquids -- 1.5.5. Metal salts -- 1.6. Tougheners and flexibilizers -- 1.7. General property specifications and certificate of analysis -- 1.8. Environmental, health, and safety considerations -- 1.9. Typical form factors and packaging of epoxy adhesives -- 1.10. Formulation and design -- 1.10.1. Epoxy resins -- 1.10.2. Curatives -- 1.10.3. Tougheners -- 1.10.4. Fillers and rheology modifiers -- 1.10.5. Adhesion promoters -- 1.11. Adhesive production -- 1.12. Use and properties of epoxy adhesives -- 1.12.1. Common applications -- 1.12.2. Applicable substrates and preparation -- 1.12.3. Mixing and dispensing -- 1.12.4. Aerospace -- 1.12.5. Automotive.
  • 1.12.6. Building, industrial, construction, civil engineering, and general manufacturing -- 1.12.7. Energy -- 1.12.8. Electronics and communications -- 1.12.9. Marine -- 1.12.10. Medical -- 1.12.11. Specialty vehicles and transportation -- 1.13. Recent advances in epoxy adhesives -- 1.13.1. Mixing and dispensing advances -- 1.13.2. Raw material advances -- 1.13.2.1. Bio-based raw materials, bisphenol alternative resins, and adhesives -- 1.13.2.2. Furans -- 1.13.2.3. Isosorbides -- 1.13.2.4. Fatty acids and sugars -- 1.13.2.5. Fatty acids and lignins -- 1.13.2.6. Bisphenol A resin alternatives -- 1.13.2.7. Curatives -- 1.13.2.8. Tougheners -- 1.13.3. General manufacturing -- 1.13.3.1. Automotive -- 1.13.3.2. Aerospace -- 1.13.3.3. Energy, construction, and infrastructure -- 1.13.3.4. Electronics and communication -- 1.14. Additional resources -- Acknowledgments -- References -- Chapter 2: Advances in acrylic structural adhesives* -- 2.1. Introduction -- 2.1.1. Historical perspective -- 2.1.2. Acrylic structural adhesive types [4] -- 2.1.2.1. Untoughened MMA-based acrylic adhesive -- 2.1.2.2. Toughened MMA-based acrylic adhesive -- 2.1.2.3. Toughened THFMA-based acrylic adhesive -- 2.1.2.4. Environmental, health, and safety-friendlier acrylic structural adhesives -- 2.1.3. Major application categories -- 2.1.3.1. Automotive -- 2.1.3.2. Transportation other than automotive -- 2.1.3.3. Industrial assembly -- 2.2. Basics of acrylic structural adhesives -- 2.2.1. Formulation components -- 2.2.2. Initiation and polymerization -- 2.2.2.1. Redox initiation -- 2.2.2.2. Polymerization of methacrylates [12,20] -- 2.2.3. Attributes of acrylic structural adhesives -- 2.2.3.1. Mix ratio -- 2.2.3.2. Open time -- 2.2.3.3. Handling strength development -- 2.2.3.4. Purge time -- 2.2.4. Bond strength and failure mode -- 2.2.4.1. Rheological behavior.
  • 2.2.4.2. Environmental durability -- High temperature endurance [ASTM D5824-98 (2017)] -- High humidity exposure [ASTM D1776, ASTM D1776M-15, ISO 16701] -- Corrosive environment [DIN 50 021-SS, ASTM B117] -- Environmental cycling [DIN 50 021-SS, DIN 50 017-KFW and DIN 50 014] -- Thermal shock -- Chemical resistance [ASTM G44] -- 2.2.5. Composition-property relationship -- 2.2.5.1. Mechanical properties of adhesive matrix -- Tensile testing (ASTM D648, DIN ISO 527) -- Dynamic mechanical analysis (ASTM D4065, D4440, D5279) -- 2.3. Interfacial adhesion -- 2.3.1. Metals -- 2.3.2. Thermoplastics and polymer composites -- 2.3.3. Low surface energy thermoplastics -- 2.3.4. Acrylic cure profile -- 2.3.5. Toughening of acrylic structural adhesives -- 2.3.5.1. Advancement in testing -- 2.3.5.2. Particulate rubbers as toughener -- 2.3.5.3. Block copolymer elastomers -- 2.3.5.4. Other elastomers [66] -- 2.4. Trends in acrylic structural adhesives -- 2.4.1. Odor -- 2.4.1.1. Low toxicity, low odor, and nonflammable methacrylates -- 2.4.2. Additive impact on EHandS profile -- 2.5. Applications -- 2.5.1. Hem-flange bonding -- 2.5.1.1. Room temperature adhesion versus high temperature adhesion -- 2.5.2. Rail/bus/trailer/recreation marine -- 2.5.2.1. Composite to composite -- 2.5.2.2. Composite to metals -- 2.5.3. Electric vehicle battery pack assembly -- 2.5.3.1. Cell to cooling plate -- 2.6. Futures trends -- 2.6.1.1. EHandS compliance -- 2.6.1.2. Vehicle crash worthiness -- 2.6.1.3. Bonding carbon-fiber composite -- 2.6.1.4. Bonding through dry lubricants -- 2.6.1.5. Supply-chain uncertainty -- Acknowledgments -- References -- Chapter 3: Advances in polyurethane structural adhesives -- 3.1. Introduction -- 3.1.1. Basic concepts -- 3.2. Characterization of PUR adhesives -- 3.2.1. Mechanical properties -- 3.2.2. Thermomechanical properties.
  • 3.3. Chemical overview and PUR structure to property relationships -- 3.3.1. Chemistry of PUR adhesives -- 3.3.2. PUR structure to property relationships -- 3.4. Formulation and raw materials of PUR adhesives -- 3.4.1. Raw materials -- 3.4.1.1. Isocyanates -- 3.4.1.2. Polyols -- 3.4.1.3. Amines as copolymers -- 3.4.1.4. Structural fillers -- 3.4.1.5. Lightweight fillers, rheology modifiers, pigments, and surface-active agents -- 3.4.1.6. Curing catalysts -- 3.4.1.7. Stabilizers -- 3.4.2. Regulatory aspects of PUR adhesives -- 3.5. Selected applications of structural polyurethane adhesives -- 3.5.1. Industrial use of structural PUR adhesives -- 3.5.2. Application equipment -- 3.6. Recent advances in PUR adhesives -- 3.6.1. New concepts to fully develop the potential of PUR adhesives -- 3.6.1.1. Fracture mechanics -- 3.6.1.2. Thermomechanical and stability testing -- 3.6.1.3. Bio-based PUR -- 3.6.1.4. Thermo-reversible PUR/debonding effects -- 3.6.2. Recent advances-Designable open time followed by immediate curing -- References -- Chapter 4: Advances in cyanoacrylate structural adhesives -- 4.1. Introduction -- 4.2. Chemistry of α-cyanoacrylates -- 4.3. Industrial synthesis/manufacture of α-cyanoacrylate esters -- 4.4. Typical performance characteristics of α-cyanoacrylates-Strengths, weaknesses, and recent developments -- 4.4.1. Improvements in thermal resistance performance -- 4.4.2. Adhesive curing through large bond gaps -- 4.5. Two-component (2K) cyanoacrylate adhesives -- 4.5.1. Two-component cyanoacrylate adhesives -- 4.5.2. 2K ``hybrid´´ cyanoacrylate adhesives -- 4.6. Photocuring cyanoacrylates -- 4.7. Biomedical cyanoacrylate adhesives -- 4.8. Cyanoacrylates and sustainability -- 4.9. Summary -- Acknowledgments -- References -- Chapter 5: Advances in anaerobic adhesives -- 5.1. Anaerobic adhesives -- 5.1.1. Introduction.
  • 5.1.2. Formulation chemistry of anaerobic adhesives -- 5.1.3. Anaerobic adhesive cure chemistry -- 5.1.4. Anaerobic adhesive applications -- 5.1.4.1. Threadlocking -- 5.1.4.2. Thread sealing -- 5.1.4.3. Retaining -- 5.1.4.4. Gasketing -- 5.2. Recent advances in anaerobic technology -- 5.2.1. New curatives for anaerobic products -- 5.2.2. Research to improve the sustainability credentials of anaerobic products -- 5.2.2.1. Overview -- 5.2.2.2. Monomers from renewable sources -- 5.2.2.3. Oligomers from renewable sources -- 5.2.2.4. Plasticizers from biorenewable sources -- 5.2.3. Anaerobic products with higher temperature performance -- 5.3. Summary -- Acknowledgments -- References -- Chapter 6: Advances in structural silicone adhesives -- 6.1. Introduction -- 6.2. Properties of silicone structural adhesives -- 6.3. Product forms and cure chemistry -- 6.3.1. Condensation cure chemistry (RTV) -- 6.3.1.1. Hydrolysis reactions -- 6.3.1.2. Physics of RTV cure -- 6.3.2. Addition cure chemistry -- 6.3.3. Electron-beam and photo-cure induced addition chemistry -- 6.4. Silicone adhesive formulations -- 6.4.1. Polymers -- 6.4.1.1. Silanol-terminated PDMS polymer -- 6.4.1.2. Vinyldimethylsiloxy-terminated PDMS polymer -- 6.4.2. Plasticizer (trimethylsiloxy-terminated PDMS polymer) -- 6.4.3. Crosslinkers -- 6.4.3.1. RTV condensation-cure -- 6.4.3.2. RTV/LTV addition cure -- 6.4.4. Catalysts -- 6.4.4.1. Condensation-cure catalysts -- 6.4.4.2. Addition-cure catalysts -- 6.4.5. Adhesion promoters -- 6.4.6. Fillers -- 6.4.7. Special additives -- 6.4.7.1. Heat stabilizers -- 6.4.7.2. Flame retardants -- 6.4.7.3. Electrically conductive fillers -- 6.4.7.4. Thermally conductive fillers -- 6.4.8. Dual cure chemistry -- 6.5. Applications of structural silicone adhesives -- 6.5.1. Automotive -- 6.5.2. Aviation and aerospace -- 6.5.3. Construction.
  • 6.5.4. Domestic appliances.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 0-323-98437-1
Titel-ID: 9925190756506463
Format
1 online resource (1190 pages)
Schlagworte
Adhesives, Building materials