Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 4271

Details

Autor(en) / Beteiligte
Titel
Nanowire Energy Storage Devices : Synthesis, Characterization and Applications
Auflage
First edition
Ort / Verlag
Weinheim, Germany : WILEY-VCH GmbH,
Erscheinungsjahr
[2024]
Link zum Volltext
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Nanowire Energy Storage Devices: Synthesis, Characterization, and Applications -- 1.1 Introduction -- 1.1.1 One‐Dimensional Nanomaterials -- 1.1.1.1 Nanorods -- 1.1.1.2 Carbon Nanofibers -- 1.1.1.3 Nanotubes -- 1.1.1.4 Nanobelts -- 1.1.1.5 Nanocables -- 1.1.2 Energy Storage Science and Technology -- 1.1.2.1 Mechanical Energy Storage -- 1.1.2.2 Electromagnetic Energy Storage -- 1.1.2.3 Electrochemical Energy Storage -- 1.1.3 Overview of Nanowire Energy Storage Materials and Devices -- 1.1.3.1 Si Nanowires -- 1.1.3.2 ZnO Nanowires -- 1.1.3.3 Single Nanowire Electrochemical Energy Storage Device -- References -- Chapter 2 Fundamentals of Nanowire Energy Storage -- 2.1 Physical and Chemical Properties of Nanowires -- 2.1.1 Electronic Structure -- 2.1.2 Thermal Properties -- 2.1.2.1 Melting Point -- 2.1.2.2 Thermal Conduction -- 2.1.3 Mechanical Properties -- 2.1.4 Adsorption and Surface Activity -- 2.1.4.1 Adsorption -- 2.1.4.2 Surface Activity -- 2.2 Thermodynamics and Kinetics of Nanowires Electrode Materials -- 2.2.1 Thermodynamics -- 2.2.2 Kinetics -- 2.3 Basic Performance Parameters of Nanowires Electrochemical Energy Storage Devices -- 2.3.1 Electromotive Force -- 2.3.2 Operating Voltage -- 2.3.3 Capacity and Specific Capacity -- 2.3.4 Energy and Specific Energy -- 2.3.5 Current Density and Charge-Discharge Rate -- 2.3.6 Power and Specific Power -- 2.3.7 Coulombic Efficiency -- 2.3.8 Cycle Life -- 2.4 Interfacial Properties of Nanowires Electrode Materials -- 2.4.1 Interface Between Nanowire Electrode Materials and Electrolytes -- 2.4.2 Heterogeneous Interfaces in Nanowire Electrode Materials -- 2.5 Optimization Mechanism of Electrochemical Properties of Nanowires Electrode Materials -- 2.5.1 Mechanism of Electron/Ion Bicontinuous Transport -- 2.5.2 Self‐Buffering Mechanism.
  • 2.6 Theoretical Calculation of Nanowires Electrode Materials -- 2.7 Summary and Outlook -- References -- Chapter 3 Design and Synthesis of Nanowires -- 3.1 Conventional Nanowires -- 3.1.1 Wet Chemical Methods -- 3.1.1.1 Hydrothermal/Solvothermal Method -- 3.1.1.2 Sol-Gel Method -- 3.1.1.3 Coprecipitation Method -- 3.1.1.4 Ultrasonic Spray Pyrolysis Method -- 3.1.1.5 Electrospinning Method -- 3.1.2 Dry Chemical Method -- 3.1.2.1 High‐Temperature Solid‐State Method -- 3.1.2.2 Chemical Vapor Deposition Method -- 3.1.3 Physical Method -- 3.2 Porous Nanowires -- 3.2.1 Template Method -- 3.2.1.1 Template by Nanoconfinement -- 3.2.1.2 Template by Orientation Induction -- 3.2.2 Self‐Assembly Method -- 3.2.3 Chemical Etching Method -- 3.3 Hierarchical Nanowires -- 3.3.1 Self‐Assembly Method -- 3.3.2 Secondary Nucleation Growth Method -- 3.4 Heterogeneous Nanowires -- 3.4.1 Heterogeneous Nucleation -- 3.4.2 Secondary Modification -- 3.5 Hollow Nanowires -- 3.5.1 Wet Chemical Method -- 3.5.2 Template Method -- 3.5.3 Gradient Electrospinning -- 3.6 Nanowire Arrays -- 3.6.1 Template Method -- 3.6.2 Wet Chemical Method -- 3.6.3 Chemical Vapor Deposition -- 3.7 Summary and Outlook -- References -- Chapter 4 Nanowires for In Situ Characterization -- 4.1 In Situ Electron Microscopy Characterization -- 4.1.1 In Situ Scanning Electron Microscopy (SEM) Characterization -- 4.1.2 In Situ Transmission Electron Microscope (TEM) Characterization -- 4.2 In Situ Spectroscopy Characterization -- 4.2.1 In Situ X‐ray Diffraction -- 4.2.2 In Situ Raman Spectroscopy -- 4.2.3 In Situ X‐ray Photoelectron Spectroscopy -- 4.2.4 In Situ XAS Characterization -- 4.3 In Situ Characterization of Nanowire Devices -- 4.3.1 Nanowire Device -- 4.3.2 Nanowire Device Characterization Example -- 4.4 Other In Situ Characterization -- 4.4.1 In Situ Atomic Force Microscopy Characterization.
  • 4.4.2 In Situ Nuclear Magnetic Resonance -- 4.4.3 In Situ Neutron Diffraction -- 4.4.4 In Situ Time‐of‐Flight Mass Spectrometry -- 4.5 Summary and Outlook -- References -- Chapter 5 Nanowires for Lithium‐ion Batteries -- 5.1 Electrochemistry, Advantages, and Issues of LIBs Batteries -- 5.1.1 History of Lithium‐ion Batteries -- 5.1.2 Electrochemistry of Lithium‐ion Batteries -- 5.1.2.1 Theoretical Operation Potential -- 5.1.2.2 Theoretical Specific Capacity of Electrode Materials and Cells -- 5.1.2.3 Theoretical Specific Energy Density of an Electrochemical Cell -- 5.1.3 Key Materials for Lithium‐ion Batteries -- 5.1.3.1 Cathode -- 5.1.3.2 Anode -- 5.1.3.3 Electrolyte -- 5.1.3.4 Separator -- 5.1.4 Advantages and Issues of Lithium‐ion Batteries -- 5.2 Unique Characteristic of Nanowires for LIBs -- 5.2.1 Enhancing the Diffusion Dynamics of Carriers -- 5.2.2 Enhancing Structural Stability of Materials -- 5.2.3 Befitting the In Situ Characterization of Electrochemical Process -- 5.2.4 Enabling the Construction of Flexible Devices -- 5.3 Nanowires as Anodes in LIBs -- 5.3.1 Alloy‐Type Anode Materials (Si, Ge, and Sn) -- 5.3.1.1 Lithium Storage in Si Nanowires -- 5.3.1.2 Lithium Storage in Ge Nanowires -- 5.3.1.3 Lithium Storage in Sn Nanowires -- 5.3.2 Metal Oxide Nanowires -- 5.3.3 Carbonaceous Anode Materials -- 5.4 Nanowires as Cathodes in LIBs -- 5.4.1 Transition Metal Oxides -- 5.4.2 Vanadium Oxide Nanowires -- 5.4.3 Iron Compounds Including Oxides and Phosphates -- 5.5 Nanowires‐Based Separators in LIBs -- 5.6 Nanowires‐Based Solid‐State Electrolytes in LIBs -- 5.7 Nanowires‐Based Electrodes for Flexible LIBs -- 5.8 Summary and Outlook -- References -- Chapter 6 Nanowires for Sodium‐ion Batteries -- 6.1 Advantages and Challenges of Sodium‐ion Batteries -- 6.1.1 Development of Sodium‐ion Batteries -- 6.1.2 Characteristic of Sodium‐ion Batteries.
  • 6.1.2.1 The Working Principle of Sodium‐ion Battery -- 6.1.2.2 Advantages of Sodium‐ion Batteries -- 6.1.3 Key Materials for Sodium‐ion Batteries -- 6.1.3.1 Cathode -- 6.1.3.2 Anode -- 6.1.3.3 Electrolyte -- 6.1.3.4 Separator -- 6.1.4 Challenges for Sodium‐ion Batteries -- 6.2 Nanowires as Cathodes in Sodium‐ion Batteries -- 6.2.1 Layered Oxide Nanowires -- 6.2.2 Tunnel‐type Oxide Nanowires -- 6.2.3 Polyanionic Compound Nanowires -- 6.3 Nanowires as Anodes in Sodium‐ion Batteries -- 6.3.1 Carbonaceous Materials and Polyanionic Compounds -- 6.3.1.1 Graphitized Carbon Materials -- 6.3.1.2 Amorphous Carbon Materials -- 6.3.1.3 Carbon Nanomaterials -- 6.3.2 Polyanionic Compounds -- 6.3.3 Metals and Metal Oxides -- 6.3.3.1 Metal Nanowires -- 6.3.3.1 Sn Nanowires -- 6.3.3.1 Sb Nanowires -- 6.3.3.2 Transition Metal Oxide Nanowires -- 6.3.4 Metal Sulfides -- 6.3.4.1 Molybdenum Sulfide and Its Composites -- 6.3.4.2 Tungsten Sulfide and Its Composites -- 6.3.4.3 Stannic Sulfide and Its Composites -- 6.3.4.4 Nickel Sulfide, Ferrous Sulfide and Their Composites -- 6.4 Summary -- References -- Chapter 7 Application of Nanowire Materials in Metal‐Chalcogenide Battery -- 7.1 Lithium-Sulfur Battery -- 7.1.1 Sulfur-Carbon Nanowire Composite Cathode Materials -- 7.1.2 Conductive Polymer Nanowire/Sulfur Composite Cathode Materials -- 7.1.3 Metal Compound Nanowires/Sulfur Composite Cathode Materials -- 7.2 Sodium-Sulfur Battery and Magnesium-Sulfur Battery -- 7.2.1 Sodium-Sulfur Battery -- 7.2.2 Magnesium-Sulfur Battery -- 7.3 Lithium-Selenium Battery -- 7.3.1 Reaction Mechanism of Lithium-Selenium Battery -- 7.3.2 Selenium‐Based Cathode Materials -- 7.3.3 Existing Problems and Possible Solutions -- 7.4 Summary and Outlook -- References -- Chapter 8 Application of Nanowires in Supercapacitors -- 8.1 Nanowire Electrode Material for Electrochemical Double‐Layer Capacitor.
  • 8.1.1 The Application of Carbon Nanotubes in EDLCs -- 8.1.2 The Application of Carbon Nanofibers in EDLCs -- 8.2 Nanowire Electrode Materials for Pseudocapacitive Supercapacitors -- 8.2.1 Metal Oxide Nanowire Electrode Materials -- 8.2.2 Conducting Polymer Nanowire Electrode Materials -- 8.3 Nanowire Electrode Materials of Hybrid Supercapacitors -- 8.3.1 Hybrid Supercapacitor Based on Aqueous Electrolyte -- 8.3.1.1 Carbon/Metal Oxide -- 8.3.1.2 Carbon/Conductive Nanowire Polymer -- 8.3.2 Other Electrolyte System Hybrid Supercapacitors -- 8.3.2.1 Organic Electrolyte System -- 8.3.2.2 Redox‐Active Electrolyte System -- 8.3.3 Solid Electrolyte or Quasi‐Solid‐State Hybrid Supercapacitor -- 8.4 Summary and Outlook -- References -- Chapter 9 Nanowires for Multivalent‐ion Batteries -- 9.1 Nanowires for Magnesium‐Ion Battery -- 9.1.1 Vanadium‐Based Nanowires for MIBs -- 9.1.2 Manganese‐Based Nanowires for MIBs -- 9.1.3 Other Nanowires for MIBs -- 9.2 Nanowires for Calcium‐Ion Batteries -- 9.3 Nanowires for Zinc‐Ion Batteries -- 9.3.1 Vanadium‐Based Nanowires for ZIBs -- 9.3.2 Manganese‐Based Nanowires for ZIBs -- 9.4 Nanowires for Aluminum Ion Batteries -- 9.5 Summary and Outlook -- References -- Chapter 10 Conclusion and Outlook -- 10.1 Structure Design and Performance Optimization of 1D Nanomaterials -- 10.2 Advanced Characterization Methods for 1D Nanomaterials -- 10.3 Applications and Challenges of Nanowire Energy Storage Devices -- 10.3.1 Application of Nanowire Structures in Lithium‐ion Batteries -- 10.3.2 Applications of Nanowire Structures in Na‐ion Battery -- 10.3.3 Applications of Nanowire Structures in Other Monovalent‐ion Batteries -- 10.3.4 Application of Nanowires in Lithium-Sulfur Batteries -- 10.3.5 Application of 1D Nanomaterials in Supercapacitors -- 10.3.6 Nanowires for Other Energy Storage Devices -- 10.3.6.1 Metal Air Batteries.
  • 10.3.6.2 Multivalent‐ion Battery.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 3-527-83246-7, 3-527-83245-9
Titel-ID: 9925172366206463
Format
1 online resource (347 pages)
Schlagworte
Electronic circuits, Energy storage