Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Thermal Management Materials for Electronic Packaging : Preparation, Characterization, and Devices
Auflage
First edition
Ort / Verlag
Weinheim, Germany : WILEY-VCH GmbH,
Erscheinungsjahr
[2024]
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Cover -- Title Page -- Copyright -- Contents -- Overview of Works -- Acknowledgments -- Chapter 1 Physical Basis of Thermal Conduction -- 1.1 Basic Concepts and Laws of Thermal Conduction -- 1.1.1 Description of Temperature Field -- 1.1.2 Temperature Gradient -- 1.1.3 Fourier's Law -- 1.1.4 Heat Flux Density Field -- 1.1.5 Thermal Conductivity -- 1.2 Heat Conduction Differential Equation and Finite Solution -- 1.2.1 Heat Conduction Differential Equation -- 1.2.2 Definite Conditions -- 1.3 Heat Conduction Mechanism and Theoretical Calculation -- 1.3.1 Gases -- 1.3.2 Solids -- 1.3.2.1 Metals -- 1.3.2.2 Inorganic Nonmetals -- 1.3.3 Liquids -- 1.4 Factors Affecting Thermal Conductivity of Inorganic Nonmetals -- 1.4.1 Temperature -- 1.4.2 Pressure -- 1.4.3 Crystal Structure -- 1.4.4 Thermal Resistance -- 1.4.5 Others -- References -- Chapter 2 Electronic Packaging Materials for Thermal Management -- 2.1 Definition and Classification of Electronic Packaging -- 2.1.1 Definition of Electronic Packaging -- 2.1.2 Functions of Electronic Packaging -- 2.1.3 The Levels of Electronic Packaging -- 2.2 Thermal Management in Electronic Equipment -- 2.2.1 Thermal Sources -- 2.2.2 Thermal Failure Rate -- 2.2.3 The Thermal Management at Different Package Levels -- 2.3 Requirements of Electronic Packaging Materials -- 2.3.1 Thermal Interface Material -- 2.3.2 Heat Dissipation Substrate -- 2.3.3 Epoxy Molding Compound -- 2.4 Electronic Packaging Materials -- 2.4.1 Metal Matrix Packaging Materials -- 2.4.2 Ceramic Matrix Packaging Materials -- 2.4.3 Polymer Matrix Packaging Materials -- 2.4.4 Carbon-Carbon Composite -- References -- Chapter 3 Characterization Methods for Thermal Management Materials -- 3.1 Overview of the Development of Thermal Conductivity Test Methods -- 3.2 Test Method Classification and Standard Samples -- 3.2.1 Steady‐State Measurement Method.
  • 3.2.2 Non‐Steady‐State Measurement Method -- 3.3 Steady‐State Method -- 3.3.1 Longitudinal Heat Flow Method -- 3.3.2 Guarded Heat Flow Meter Method -- 3.3.3 Guarded Hot Plate Method -- 3.4 Non‐Steady‐State Method -- 3.4.1 Laser Flash Method -- 3.4.2 Hot‐Wire Method -- 3.4.3 Transient Planar Heat Source (TPS) Method -- 3.5 Electrical Properties and Measurement Techniques -- 3.5.1 Electric Conductivity and Resistivity -- 3.5.1.1 Testing Resistivity of Bulk Material -- 3.5.1.2 Four‐Probe Method -- 3.5.1.3 The Van der Pauw Method -- 3.5.2 Dielectric Constant and Its Characterization -- 3.6 Material Characterization Analysis Technology -- 3.6.1 Optical Microscope -- 3.6.2 X‐ray Diffraction -- 3.6.2.1 Phase Analysis -- 3.6.2.2 Determination of Crystallinity -- 3.6.2.3 Precise Measurement of Lattice Parameters -- 3.6.3 Scanning Electron Microscope -- 3.6.4 Transmission Electron Microscope -- 3.6.5 Scanning Acoustic Microscope -- 3.6.6 Atomic Force Microscope -- 3.6.7 Thermal Mechanical Analysis (TMA) -- 3.6.8 Dynamic Mechanical Analysis (DMA) -- 3.7 Reliability Analysis and Environmental Performance Evaluation -- 3.7.1 Failure Modes and Mechanisms -- 3.7.1.1 Residual Stress -- 3.7.1.2 Stress Void -- 3.7.1.3 Adherence Strength -- 3.7.1.4 Moisture -- 3.7.2 Reliability Certification -- 3.7.2.1 Viscosity of Plastic Packaging Material -- 3.7.2.2 The Moisture Test -- 3.7.2.3 Hygroscopic Strain and Humidity Measurement -- 3.7.2.4 Temperature Adaptability -- 3.7.2.5 Tightness -- 3.7.2.6 Defects in Manufacturing Process Control -- 3.7.2.7 Quality Control Procedure for High‐Reliability Plastic Packaging Devices -- 3.7.2.8 Selection of High‐Reliability Plastic Packaging Devices -- 3.8 Conclusion -- References -- Chapter 4 Construction of Thermal Conductivity Network and Performance Optimization of Polymer Substrate.
  • 4.1 Synthesis and Surface Modification of High Thermal Conductive Filler and the Synthesis of Substrates -- 4.1.1 Synthesis of Hexagonal Boron Nitride Nanosheets by Halide‐Assisted Hydrothermal Method at Low Temperature -- 4.1.2 Modification and Compounding of Inorganic Thermal Conductive Silicon Carbide Filler -- 4.1.3 Preparation and Characterization of Intrinsic Polymer with High Thermal Conductivity -- 4.2 Study on Polymer Thermal Conductive Composites with Oriented Structure -- 4.2.1 Epoxy Composites Filled with Boron Nitride and Amino Carbon Nanotubes -- 4.2.2 Reduction of Graphene Oxide by Amino Functionalization/Hexagonal Boron Nitride -- 4.2.3 The Interconnection Thermal Conductive Network of Three‐Dimensional Staggered Boron Nitride Sheet/Amino‐Functionalized Carbon Nanotubes -- 4.3 Preparation of Thermal Conductive Composites with Inorganic Ceramic Skeleton Structure -- 4.3.1 Preparation of Hollow Boron Nitride Microspheres and Its Epoxy Resin Composite -- 4.3.2 Three‐Dimensional Skeleton and Its Epoxy Resin Composite -- 4.4 Improved Thermal Conductivity of Fluids and Composites Using Boron Nitride Nanoparticles Through Hydrogen Bonding -- 4.4.1 Preparation and Characterization of Improved Thermal Conductivity of Fluids and Composites Using Boron Nitride Nanoparticles -- 4.4.2 Discussion and Analysis of BN Composites as Thermal Interface Materials -- 4.5 Improved Thermal Conductivity of PEG‐Based Fluids Using Hydrogen Bonding and Long Chain of Nanoparticle -- 4.5.1 Preparation and Characterization of Thermal Conductivity of PEG‐Based Fluids Using Hydrogen Bonding and Long Chain of Nanoparticle -- 4.5.2 Discussion and Analysis of PEG‐Based Fluids Using Hydrogen Bonding and Long Chain of Nanoparticle -- 4.6 Conclusion -- References -- Chapter 5 Optimal Design of High Thermal Conductive Metal Substrate System for High‐Power Devices.
  • 5.1 Power Devices and Thermal Conduction -- 5.2 Optimization and Adaptability Design, Preparation and Modification of High Thermal Conductive Matrix and Components -- 5.2.1 Preparation and Thermal Conductivity of Gr/Cu Composites -- 5.2.1.1 Gr/Cu In Situ Composite Method -- 5.2.1.2 Thermal Conductivity of Gr/Cu Micro-Nano‐Laminated Composites -- 5.2.1.3 Coefficient of Thermal Expansion of Composite Materials -- 5.2.2 Preparation and Thermal Conductivity of Graphite/Cu Composites -- 5.2.2.1 Variations in the Intrinsic Thermophysical Properties of Graphite Sheets During the Compounding Process -- 5.2.2.2 Orientation Modulation of Graphite Sheets in Composites -- 5.2.2.3 Effect of Graphite Sheet Orientation on the Thermal Conductivity of Graphite/Cu Composites -- 5.2.3 Preparation and Thermal Conductivity of Graphite/Gr/Cu Composites -- 5.2.3.1 Thermal Conductivity of Graphite/Gr/Cu Composites -- 5.2.3.2 Thermal Expansion Coefficient of Graphite/Gr/Cu Composites -- 5.3 Formation and Evolution Rules of High Thermal Conductive Interface and Its Control Method -- 5.3.1 Theoretical Calculation of High Thermal Conductive Interface Design -- 5.3.2 Study on Interface Regulation of Chromium‐Modified Diamond/Cu Composites -- 5.3.3 Study on Interface Regulation of Boron‐Modified Diamond/Cu Composites -- 5.3.4 Study on Interface Regulation of Gr‐Modified Diamond/Cu Composites -- 5.4 Formation and Evolution Rules of High Thermal Conductive Composite Microstructure and Its Control Method -- 5.4.1 Configurated Diamond/Metal Composites with High Thermal Conductivity -- 5.4.2 Effect of Secondary Diamond Addition on Properties of Composites -- 5.4.3 Effect of Secondary Particle Size on the Properties of Composites -- 5.4.4 Thermal Expansion Behavior of Composite Materials with Different Thermal Conductive Configurations -- References.
  • Chapter 6 Preparation and Performance Study of Silicon Nitride Ceramic Substrate with High Thermal Conductivity -- 6.1 Rapid Nitridation of Silicon Compact -- 6.1.1 Rapid Nitridation of Silicon Compact -- 6.1.1.1 Optimization (YEu)2O3/MgO Sintering Additive -- 6.1.1.2 Further Optimization of the SRBSN with 2YE5M as Sintering Additive -- 6.2 Optimization of Sintering Aids for High Thermal Conductivity Si3N4 Ceramics -- 6.2.1 Preparation of High Thermal Conductivity Silicon Nitride Ceramics Using ZrSi2 as a Sintering Aid -- 6.2.1.1 Reaction Mechanism of ZrSi2 -- 6.2.1.2 Effect of ZrSi2 on the Phase Composition -- 6.2.1.3 Effect of ZrSi2 on Microstructure -- 6.2.1.4 Effect of ZrSi2 on Thermal Conductivity -- 6.2.1.5 Effect of ZrSi2 on Mechanical Properties and Electrical Resistivity -- 6.2.2 High Thermal Conductivity Si3N4 Sintered with YH2 as Sintering Aid -- 6.2.2.1 Pre‐sintering of the Compact -- 6.2.2.2 Effect of YH2 on the Densification and Weight Loss -- 6.2.2.3 Effect of YH2 on Elements Distribution and Phase Composition -- 6.2.2.4 Effect of YH2 on Microstructure -- 6.2.2.5 Effect of YH2 on Thermal Conductivity -- 6.2.2.6 Effect of YH2 on Mechanical Properties -- 6.2.2.7 Differences in the Effect of Different REH2 on the Thermal Conductivity of Silicon Nitride -- 6.3 Investigation of Cu‐Metalized Si3N4 Substrates Via Active Metal Brazing (AMB) Method -- 6.3.1 Effect of Brazing Temperature on the Peeling Strength of Cu‐Metalized Si3N4 Substrates -- 6.3.2 Effect of Holding Time on the Peeling Strength of Cu‐Metalized Ceramic Substrates -- 6.3.3 Effect of Brazing Ball Milling Time on the Peeling Strength of Cu‐Metalized Ceramic Substrates -- References -- Chapter 7 Preparation and Properties of Thermal Interface Materials -- 7.1 Conception of Thermal Interface Materials -- 7.2 Polymer‐Based Thermal Interface Materials.
  • 7.2.1 Filler Surface Functionalization.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 3-527-84312-4, 3-527-84311-6
OCLC-Nummer: 1412622947
Titel-ID: 9925172364106463
Format
1 online resource (362 pages)
Schlagworte
Materials science