Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 12444

Details

Autor(en) / Beteiligte
Titel
Perovskite Light Emitting Diodes : Materials and Devices
Auflage
1st ed
Ort / Verlag
Newark : John Wiley & Sons, Incorporated,
Erscheinungsjahr
2024
Link zum Volltext
Beschreibungen/Notizen
  • Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Structure and Physical Properties of Metal Halide Perovskites -- 1.1 Crystal Structure of Perovskite Materials -- 1.2 Exciton Effects in Perovskite Materials -- 1.2.1 Definition of an Exciton -- 1.2.2 Self‐Trapping Excitons in Perovskite Materials -- 1.3 Size Effect of Perovskite Materials -- 1.4 Luminescence Properties of Perovskite Materials -- 1.4.1 Photon Generation in Perovskite Materials -- 1.4.2 Photophysical Processes and Efficiency Calculations of Perovskite Luminescence -- 1.4.3 Non‐radiative Combination Mechanisms at Surfaces and Interfaces -- 1.5 Factors Influencing the Efficiency of Perovskite Light Emitting Diodes -- 1.5.1 Device Structure of the Perovskite Light Emitting Diode -- 1.5.2 Physical Parameters of Perovskite Light‐Emitting Diodes -- 1.5.3 Device Performance Development of Perovskite Light‐Emitting Diodes -- 1.6 Summary -- References -- Chapter 2 Synthesis and Preparation of Perovskite Materials -- 2.1 Introduction -- 2.2 Perovskite Materials Structures -- 2.2.1 3D Halide Perovskite Materials for Light‐Emitting Diodes -- 2.2.2 Layered Halide Perovskite Materials -- 2.2.3 Halide Perovskite Quantum Dots/Nanocrystals -- 2.2.4 Commercial Prospects of Perovskite Materials -- 2.3 Preparation of Perovskite Nanomaterials -- 2.3.1 Mechanochemical Method -- 2.3.2 Ultrasonic Method -- 2.3.3 Microwave Method -- 2.3.4 Solvent Heat Method -- 2.3.5 Thermal Injection Method -- 2.3.6 Ligand‐Assisted Reprecipitation -- 2.3.7 Ion Exchange Method -- 2.3.8 Laser Etching Method -- 2.4 Processing Technology for Large‐Area Perovskite Films -- 2.4.1 Spin Coating Method -- 2.4.2 Vacuum Thermal Vapor Deposition Method -- 2.4.3 Printing Method -- 2.4.4 Vapor ‐Phase Deposition Method -- 2.4.5 Spraying Method -- 2.4.6 Template Method -- 2.4.7 Non‐Template Method.
  • 2.5 Conclusion and Outlook -- References -- Chapter 3 Near‐Infrared Perovskite Light‐Emitting Devices -- 3.1 Introduction -- 3.2 Progress in Near‐Infrared Perovskite Luminescence Materials -- 3.3 Near‐Infrared Perovskite Luminescent Materials -- 3.3.1 Methylamine Lead Iodide (MAPbI3) -- 3.3.2 NIR‐Emitting Materials Based on Perovskite -- 3.4 Strategies to Improve the Performance of NIR Perovskite Devices -- 3.4.1 NIR Perovskite Material Optimization -- 3.4.1.1 Near‐Infrared Wavelength Adjustment -- 3.4.1.2 Multiple Quantum Well Structure -- 3.4.1.3 Molecular Passivation -- 3.4.2 Device Structure Optimization -- 3.5 Conclusion and Outlook -- References -- Chapter 4 Perovskite Red Light‐Emitting Materials and Devices -- 4.1 The Development History of Perovskite Red Light‐Emitting Diodes -- 4.2 Red Emission Perovskite Materials -- 4.2.1 Typical Red Emission Perovskite Material CsPbI3 -- 4.2.2 Other Red Emission Perovskite Materials -- 4.2.2.1 Other ABX3 and Hybridized ABX3‐Type Materials -- 4.2.2.2 Double Perovskite -- 4.2.3 Red Emission Perovskite Synthesis -- 4.2.3.1 Synthesis of Nanocrystals -- 4.2.3.2 Synthesis of Quasi‐Two‐Dimensional Films -- 4.2.4 Optimization Strategies of Red Perovskite Materials -- 4.2.4.1 Doping -- 4.2.4.2 Surface Passivation -- 4.2.4.3 Multiple Quantum Well Structure -- 4.2.4.4 Ligand Engineering -- 4.2.4.5 Additive Engineering -- 4.3 Perovskite Red Light‐Emitting Diodes -- 4.3.1 Device Structure and Common Materials for Each Functional Layer -- 4.3.2 Device Optimization Strategy -- 4.3.2.1 Energy Level Regulation -- 4.3.2.2 Light Extraction Technology -- 4.3.2.3 Interface Treatment Method -- 4.4 Conclusion and Outlook -- References -- Chapter 5 Perovskite Green Light‐Emitting Materials and Devices -- 5.1 History of Green Perovskite Light‐Emitting Diodes -- 5.2 Green Light Perovskite Materials.
  • 5.2.1 Pure Inorganic Perovskite Materials -- 5.2.2 Organic-Inorganic Hybrid Perovskite Materials -- 5.2.3 Synthesis of Perovskite Green Light‐Emitting Materials -- 5.3 Development of Green Perovskite Light‐Emitting Diodes -- 5.3.1 Structure of Green Perovskite Light‐Emitting Diode Devices -- 5.3.2 Quantum Dot Green Perovskite Light‐Emitting Diodes -- 5.3.3 Nanocrystalline Green Perovskite Light‐Emitting Diodes -- 5.3.4 Quasi‐2D Ruddlesden-Popper Green Perovskite Light‐Emitting Diodes -- 5.4 Factors Affecting the External Quantum Efficiency of Perovskite Green Light‐Emitting Diodes -- 5.4.1 Aspects of Materials -- 5.4.2 Aspects of the Device Structure -- 5.5 Strategies for Improving the External Quantum Efficiency of Green Perovskite Light‐Emitting Diodes -- 5.5.1 Ligand Engineering -- 5.5.2 Crystal Engineering -- 5.5.3 Surface Engineering -- 5.5.4 Passivation Engineering -- 5.5.5 Optimization of the Device Structure -- 5.6 Other Properties of Green Perovskite Light‐Emitting Diodes -- 5.7 Conclusion and Outlook -- References -- Chapter 6 Blue Perovskite Light‐emitting Materials and Devices -- 6.1 Technology Development of Blue Perovskite Light‐emitting Diodes -- 6.2 Blueshift Strategy -- 6.3 Perovskite Blue Light‐emitting Materials -- 6.3.1 Perovskite Blue Light‐emitting Materials with a Quasi‐two‐dimensional Structure -- 6.3.1.1 Development of New Bulky Cations -- 6.3.1.2 Mixing of Bulky Cations -- 6.3.1.3 Cationic Doping -- 6.3.2 Blue Light Perovskite Nanocrystals or Quantum Dot Materials -- 6.4 Synthesis and Use of New Long‐Chain Ligands -- 6.5 Surface Modification of Nanostructures -- 6.6 Optimization of the Internal Structure -- 6.7 Process for the Preparation of Blue Light‐Emitting Layers -- 6.7.1 Preparation of Three‐Dimensional and Quasi‐Two‐Dimensional Perovskite Films -- 6.7.2 Preparation of Nano‐Microcrystalline Precursors.
  • 6.8 Device Performance Optimization and Interface Engineering -- 6.8.1 Passivation of Film Defects -- 6.8.2 Selection and Optimization of Hole and Electron Injection Layers -- 6.8.3 Interface Engineering -- 6.9 Optimization of Device Stability -- 6.9.1 Lifetime of Perovskite Blue Light‐emitting Diodes -- 6.9.2 Optimization of Efficiency Stability in Perovskite Light‐emitting Diodes -- 6.9.3 Light Color Stability Optimization -- 6.10 Conclusion and Outlook -- References -- Chapter 7 Effect of Metal Ion Doping on Perovskite Light‐Emitting Materials -- 7.1 Metal Ion Doping Effect -- 7.1.1 Effect of A‐site Metal Ion Doping on Perovskite Materials -- 7.1.2 Effect of B‐site Metal Ion Doping on Perovskite Materials -- 7.2 Metal Ion‐Doped Materials and Devices -- 7.2.1 Near‐infrared Optical Perovskite Materials -- 7.2.2 Red Light Perovskite Materials -- 7.2.3 Green Light Perovskite Materials -- 7.2.4 Blue‐Light Perovskite Materials -- 7.3 Metal Ion Doping Methods -- 7.3.1 Post‐synthesis Ion Exchange Methods -- 7.3.2 Colloidal Synthesis Methods -- 7.3.3 The Thermal Injection Methods -- 7.3.4 High Temperature Solid‐state Synthesis Methods -- 7.4 Conclusion and Outlook -- References -- Chapter 8 Non‐lead Metal Halide Perovskite Materials -- 8.1 Development History of Non‐lead Blue Perovskite Materials -- 8.2 Preparation of Non‐lead Metal Halide Materials -- 8.3 Types of Non‐lead Metal Halide Materials -- 8.3.1 Tin‐Based Perovskites Materials -- 8.3.2 Bismuth‐Based Metal Halide Materials -- 8.3.3 Antimony‐Based Metal Halide Materials -- 8.3.4 Copper‐Based Metal Halide Materials -- 8.3.5 Europium‐Based Metal Halide Materials -- 8.3.6 Bimetallic Cationic Halide Perovskites Materials -- 8.4 Methods for Optimizing the Fluorescence Quantum Efficiency of Non‐lead Metal Halide Materials -- 8.4.1 Surface Passivation.
  • 8.4.2 Selection of Solvents and Undesirable Solvents -- 8.4.3 Doping -- 8.5 Conclusion and Outlook -- References -- Chapter 9 Perovskite White Light‐emitting Materials and Devices -- 9.1 Background of WPeLED -- 9.2 Down‐conversion Method -- 9.3 Full Electroluminescent PeLEDs -- 9.3.1 Yellow Perovskite Light‐emitting Diodes -- 9.3.1.1 Zero‐dimensional Sn‐doped Halide Perovskites -- 9.3.1.2 2D (C18H35NH3)2SnBr4 Perovskite -- 9.3.1.3 Colloidal Undoped and Double‐doped Cs2AgInCl6 Nanocrystals -- 9.3.1.4 Introducing Separated Emitting Centers -- 9.3.2 Progress in the Research of Sky‐Blue Perovskite Light‐emitting Diodes -- 9.4 Single White Light Perovskite Materials and Self‐trapped Excitons -- 9.4.1 Single White Light Perovskite Materials -- 9.4.1.1 (110) Perovskite with Corrugated Inorganic Layers -- 9.4.1.2 (001) Perovskite with Flat Inorganic Layers -- 9.4.2 Self‐trapped Excitons -- 9.5 Perovskite-Organic Coupling White PeLEDs -- 9.6 Others -- 9.7 Conclusion and Outlook -- References -- Chapter 10 Electron and Hole Transport Materials -- 10.1 Background of Charge Transport Materials -- 10.1.1 Charge Transport of Metal Halide Perovskite Materials -- 10.1.2 Charge Transport Materials in PeLED -- 10.2 Electron Transport Materials in PeLEDs -- 10.2.1 Inorganic Oxides Electron Transport Materials -- 10.2.2 Inorganically Doped Electron Transport Materials -- 10.2.3 Organic Monolayer Electron Transport Materials -- 10.2.4 Organic Multilayer Electron Transport Materials -- 10.2.5 Doped Organic Electron Transport Materials -- 10.2.6 Organic-Inorganic Hybrid Electron Transport Materials -- 10.3 Hole Transport Materials in PeLEDs -- 10.4 Progress in the Study of Hole Transport Layers and Hole Injection Layers in Perovskite Light Emitting Diodes -- 10.4.1 PVK‐Doped TPD, TCTA -- 10.4.2 PEDOT:PSS After Methanol Treatment -- 10.4.3 TB(MA) Instead of PEDOT:PSS.
  • 10.4.4 PSS‐Doped Na.
  • Description based on publisher supplied metadata and other sources.
Sprache
Identifikatoren
ISBN: 3-527-84495-3, 3-527-84493-7
OCLC-Nummer: 1416190509
Titel-ID: 9925172356106463
Format
1 online resource (371 pages)