Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 14

Details

Autor(en) / Beteiligte
Titel
Electronic Structure Crystallography and Functional Motifs of Materials
Auflage
1st ed
Ort / Verlag
Newark : John Wiley & Sons, Incorporated,
Erscheinungsjahr
2024
Beschreibungen/Notizen
  • Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Foreword 1 -- Foreword 2 -- Preface -- Abbreviations -- Introduction -- Chapter 1 Overview of Electronic Structure Crystallography -- 1.1 Introduction -- 1.1.1 History of Electronic Structure Crystallography -- 1.1.2 The Beginnings of X‐ray Crystallography and Quantum Mechanics -- 1.1.3 The Nascent Period of Experimental Electronic Structure Research -- 1.1.4 Developments of Pseudo‐atom Models -- 1.1.5 Developments of Experimental Electron‐density Matrix Models -- 1.1.6 Developments of Experimental Electron Wavefunction Models -- 1.1.7 Developments in Electron Diffraction‐Based Studies of Electronic Structures -- 1.2 Basic Descriptors of Electronic Structure -- 1.2.1 Electron Density -- 1.2.2 Residual Density -- 1.2.3 Deformation Density -- 1.2.4 Electron Wavefunction and Density Matrix -- 1.3 Experimental Characterization of Electronic Structure -- 1.3.1 Experimental Electronic Structure Measurement with X‐ray Single‐crystal Diffractometer -- 1.3.1.1 X‐ray Source -- 1.3.1.2 Goniometer -- 1.3.1.3 X‐ray Detector -- 1.3.1.4 Cryogenic Systems -- 1.3.2 Key Aspects of Experimental Electronic Structure Measurement -- 1.3.2.1 Single‐crystal Samples -- 1.3.2.2 Measurement Process -- 1.3.2.3 Data Correction -- 1.3.2.4 Examination of the Quality of Electronic Structure Refinement -- References -- Chapter 2 First‐Principles Calculations of the Electron Density Functions -- 2.1 Introduction -- 2.2 Basic Framework and Assumptions of the First‐Principles Calculations -- 2.3 Density Matrix and Density Function -- 2.3.1 Basic Definition -- 2.3.2 Electron Density -- 2.3.3 Momentum Density -- 2.4 Hartree-Fock (HF) and Kohn-Sham (KS) Methods -- 2.4.1 Basic Theoretical Framework -- 2.4.2 Periodic Solutions of Hartree-Fock (HF) and Kohn-Sham (KS) Equations.
  • 2.4.3 Calculation of Crystal Density Matrix and Density Function -- 2.4.4 Pseudopotentials -- 2.4.5 Basis Set -- References -- Chapter 3 Topological Indices and Properties of Electronic Structures -- 3.1 Introduction -- 3.2 Analysis of Topological Atoms in Molecules -- 3.2.1 Topological Description of the Electron Density -- 3.2.2 Gradient Vector Field and Topological Atoms -- 3.2.3 Bond Path and Molecular Topological Graph -- 3.2.4 Laplacian -- 3.2.5 Topological Properties of Chemical Bonds -- 3.2.5.1 Electron Density at Bond Critical Points -- 3.2.5.2 Bond Radius and Bond Path Length -- 3.2.5.3 Laplacian of Electron Density at the Bond Critical Points -- 3.2.5.4 Ellipticity -- 3.2.5.5 Energy Density of Bond Critical Points -- 3.2.5.6 Delocalization Index and Bond Order -- 3.2.6 Topological Atomic Properties -- 3.2.6.1 Atomic Charges -- 3.2.6.2 Atomic Volume -- 3.2.6.3 Atomic Kinetic Energy -- 3.2.6.4 Laplacian -- 3.2.6.5 Total Atomic Energy -- 3.2.6.6 Atomic Dipole Moment -- 3.2.6.7 Atomic Quadrupole Moment -- 3.2.6.8 Atomic Information Entropy -- 3.3 Chemical Interaction Analysis -- 3.3.1 Source Function -- 3.3.2 Electron Localization Function -- 3.3.3 Reduced Density Gradient -- 3.4 Coarse Graining and Energy Partition of the Density Matrix -- 3.4.1 Partition of the Density Matrix in Real Space -- 3.4.2 Energy Partition -- 3.4.3 Electron Population Statistics -- 3.5 Restricted Space Partition -- 3.5.1 ω‐Restricted Partition -- 3.5.2 Restricted Electron Population Analysis -- 3.5.3 Quasi‐continuous Distribution -- 3.5.4 Electron Localization Indicators (ELI) -- 3.5.4.1 Same‐spin Electron Pairs -- 3.5.4.2 Singlet and Triplet Electron Pairs -- 3.5.4.3 ELI in Momentum Space -- 3.6 Intermolecular Interaction Energy -- 3.6.1 Interaction Energy of Experimental Electron Density -- 3.6.2 Pseudoatomic Representation of Electrostatic Interactions.
  • 3.6.2.1 Multipole Expansion Approximation -- 3.6.2.2 Exact Potential and Multipole Moment (EPMM) Model -- 3.6.2.3 Promolecular Approximation -- 3.6.3 Non‐electrostatic Interactions -- 3.6.4 Lattice Energy -- 3.6.5 Interaction Energies Obtained from Experimental Charge Analysis -- References -- Chapter 4 Principles of Electronic Structure Measurement -- 4.1 Introduction -- 4.2 Thermal Vibration Analysis -- 4.2.1 Lattice Dynamics -- 4.2.2 Atomic Displacement Parameters -- 4.2.3 Rigid Fragment Analysis -- 4.2.4 Neutron Diffraction‐assisted Analysis -- 4.2.4.1 Temperature -- 4.2.4.2 Absorption -- 4.2.4.3 Extinction -- 4.2.4.4 Thermal Diffuse Scattering -- 4.2.4.5 Multiple Scattering -- 4.3 Scattering Experiments -- 4.3.1 X‐ray Diffraction -- 4.3.2 Polarized Neutron Diffraction -- 4.3.3 Compton Scattering -- 4.4 Refinement Algorithm for Experimental Electronic Structure -- 4.4.1 Least‐square Method -- 4.4.1.1 Mathematical -- 4.4.1.2 Least‐square Refinement of Structure Factors -- 4.4.1.3 Parameter‐estimated variance and covariance -- 4.4.2 Maximum Entropy Method -- References -- Chapter 5 Pseudo‐atom Models -- 5.1 Introduction -- 5.2 Independent Atom Model -- 5.3 Kappa Model -- 5.4 Multipole Model -- 5.4.1 Multipole Spherical Harmonics -- 5.4.2 Real Spherical Harmonic Density Function -- 5.4.3 Radial Distribution Functions -- 5.4.4 Multipole Model Framework -- 5.4.5 Aspheric Atomic Scattering Factors -- 5.4.6 Multipolar Model of Core Electron Expansion -- 5.5 Spin Density Model -- 5.5.1 Pure Spin Contribution -- 5.5.1.1 Atomic Orbital Model of Spin Density -- 5.5.1.2 Multipole Refinement of Spin Density -- 5.5.2 Spin and Orbital Contributions -- 5.5.3 Non‐collinear Magnetism -- 5.5.4 Combinatorial Refinement of Electron Density and Spin Density -- 5.6 Other Electron Density Models -- 5.6.1 The X‐ray Atomic Orbital (XAO) Model.
  • 5.6.1.1 Atomic Single‐electron Orbitals in a Crystal Field -- 5.6.1.2 Electron Density and Structure Factor -- 5.6.2 X‐ray Molecular Orbital Model (XMO) -- 5.6.2.1 Molecular Orbital and Electron Density -- 5.6.2.2 Structure Factors for Monocentric and Bicentric Terms -- 5.6.2.3 Processing of Temperature Factors -- 5.6.3 Molecular Orbitals with Variable Occupation Numbers Model (MOON) -- References -- Chapter 6 Density Matrix Model -- 6.1 Introduction -- 6.2 Density Matrix Model -- 6.2.1 Definition of the Density Matrix -- 6.2.2 Localized Model of the Density Matrix -- 6.3 Correlation of Density Matrix to Scattering Experiments -- 6.3.1 Dynamic Scattering Factor -- 6.3.2 Static Structure Factor -- 6.3.3 Elastic Scattering -- 6.3.4 Inelastic Scattering -- 6.4 Reconstruction and Refinement of the Density Matrix -- 6.4.1 Bayesian Method -- 6.4.2 Combined Refinement of Different Types of Data -- 6.4.3 Refinement of the One‐electron Reduced Density Matrix (1‐RDM) -- 6.4.4 Combinatorial Refinement of Structure Factor and Compton Profile Data -- 6.4.5 Spin‐resolved One‐order Reduced Density Matrix (1‐SRDM) Refinement -- 6.4.5.1 Basic Framework -- 6.4.5.2 Molecular Modeling -- 6.4.5.3 Magnetic Structure Factor and Magnetic Compton Profile -- 6.4.5.4 Variation of the Basis Functions -- 6.4.5.5 Variation of Spin Population Matrices -- References -- Chapter 7 Electron Wavefunction Models -- 7.1 Introduction -- 7.2 X‐ray Constrained Wavefunction (XCW) Model -- 7.2.1 Mathematical Framework -- 7.2.2 Hirshfeld Atom Refinement -- 7.2.2.1 Selection of Wavefunction -- 7.2.2.2 Electron Density -- 7.2.2.3 Hirshfeld Atomic Partitioning Method -- 7.2.2.4 Calculation of the Structure Factor -- 7.2.3 X‐ray Constrained Wavefunction Refinement -- 7.2.3.1 Special Treatment for Thermal Vibrations -- 7.2.3.2 Density Matrix Representation of Structure Factor.
  • 7.2.3.3 Experimental Constrained Wavefunction Refinement -- 7.2.4 Open Shell System Method -- 7.2.5 Treatment of Relativistic Effects -- 7.3 The X‐ray‐Constrained Extremely Localized Molecular Orbital Method -- 7.3.1 Theoretical Extremely Localized Molecular Orbitals -- 7.3.2 Refinement of the Experimentally Constrained Extremely Localized Molecular Orbitals -- References -- Chapter 8 Functional Electronic Structures and Functional Motif of Materials -- 8.1 Introduction -- 8.2 Material Functional Motif -- 8.2.1 Crystal Structure -- 8.2.2 Electronic Structure -- 8.2.3 Magnetic Structure -- 8.2.4 Modulated Defects -- 8.2.5 Statistical Defects -- 8.2.6 Local Defects -- 8.3 Functional Electronic Structures -- References -- Index -- EULA.
  • This book focuses on the electronic structure and functional motifs of materials, exploring both theoretical and experimental approaches in material science and chemistry. It covers the basic theory, experimental techniques, and refining models used to characterize the electronic structure of materials. The book emphasizes the role of X-ray diffraction and scattering methods in understanding material atomic arrangements. It aims to provide a comprehensive understanding of the electronic structure, essential for the development of novel materials. The authors, Prof. Guo-Cong Guo and Prof. Xiao-Ming Jiang, contribute their expertise in structural chemistry and material science. This book is intended for researchers and professionals in the fields of chemistry and material science.
  • Description based on publisher supplied metadata and other sources.
  • Part of the metadata in this record was created by AI, based on the text of the resource.
Sprache
Identifikatoren
ISBN: 9783527842339, 3527842330, 9783527842315, 3527842314
Titel-ID: 9925172327506463
Format
1 online resource (243 pages)
Schlagworte
Electronic structure, Materials science