Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 30145

Details

Autor(en) / Beteiligte
Titel
Nanocellulose : A Biopolymer for Biomedical Applications
Auflage
1st ed
Ort / Verlag
Newark : John Wiley & Sons, Incorporated,
Erscheinungsjahr
2024
Link zum Volltext
Beschreibungen/Notizen
  • Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Nanocellulose: A Cutting Edge Biopolymer - An Overview -- 1.1 Introduction -- 1.2 Nanocellulose: A Brief Overview -- 1.2.1 Structure and Source of Cellulose -- 1.2.2 Nomenclature and Types of Nanocellulose -- 1.3 Extraction of Nanocellulose -- 1.3.1 Mechanical Extraction -- 1.3.2 Chemical Extraction -- 1.4 Surface Modification and Functionalization for Nanocelluloses -- 1.4.1 Esterification -- 1.4.2 Silylation -- 1.4.3 Amidation -- 1.4.4 Sulfonation -- 1.5 Applications of Nanocellulose in Polymeric Composites -- 1.5.1 Nanocellulose-Reinforced Polymer Nanocomposites -- 1.5.1.1 Dispersion of Nanocellulose in the Matrix -- 1.5.1.2 Mechanical Performance of Resulting Nanocomposite -- 1.5.2 Nanocellulose-Based Hydrogels -- 1.5.3 Nanocellulose-Based Filaments -- 1.5.4 Nanocellulose for Biomedical Application -- 1.6 Summary and Prospects -- 1.6.1 Advantages of Nanocellulose-Reinforced Polymer Composites -- 1.6.2 Current Challenges -- 1.6.2.1 Functionalization -- 1.6.2.2 Mass Production -- 1.6.3 Conclusion and Future Developments -- References -- Chapter 2 Cellulose Nanofibers (CNF) and Nanocrystals (CNC): Pre-Treatment, Preparation, and Characterization -- 2.1 Introduction -- 2.2 Cellulose Nanofibers (CNF) -- 2.2.1 Pre-Treatment -- 2.2.1.1 Retting Process -- 2.2.1.2 Desalting Process -- 2.2.1.3 Dewaxing Process -- 2.2.1.4 Alkali Treatment -- 2.2.1.5 Ionic Liquid Extraction -- 2.2.1.6 Bleaching Treatment -- 2.2.1.7 Acid Treatment -- 2.2.1.8 Microwave-Assisted Hydrolysis -- 2.2.1.9 TEMPO-Oxidation -- 2.2.2 Extraction -- 2.2.2.1 Homogenization -- 2.2.2.2 Microfluidization -- 2.2.2.3 Ball Milling -- 2.2.2.4 Grinding -- 2.2.2.5 Blending -- 2.2.2.6 Sonication -- 2.2.2.7 Steam Explosion -- 2.2.2.8 Enzymatic Hydrolysis -- 2.2.3 Post-Treatment -- 2.2.3.1 Dialysis -- 2.2.3.2 Centrifugation.
  • 2.2.3.3 Drying -- 2.3 Cellulose Nanocrystals (CNC) -- 2.3.1 Pre-Treatment -- 2.3.1.1 Alkali Treatment -- 2.3.1.2 Bleaching -- 2.3.1.3 Other Pre-Treatments -- 2.3.2 Extraction -- 2.3.2.1 Acid Hydrolysis -- 2.3.2.2 Enzymatic Hydrolysis -- 2.3.2.3 TEMPO Oxidation -- 2.3.2.4 Mechanical Process -- 2.3.3 Post-Treatment -- 2.4 Characterization -- 2.4.1 Morphology -- 2.4.1.1 Microscopy -- 2.4.2 Physical Characterization -- 2.4.2.1 XRD -- 2.4.2.2 Zeta Potential -- 2.4.2.3 TGA -- 2.4.3 Chemical Characterization -- 2.4.3.1 FTIR -- 2.4.3.2 XPS -- 2.4.3.3 Elemental Analysis -- 2.4.4 Mechanical Characterization -- 2.5 Conclusion -- References -- Chapter 3 Synthesis and Characterization of Bacterial Nanocellulose -- 3.1 Introduction -- 3.1.1 Production of Bacterial Nanocellulose -- 3.1.2 Classification of Bcs Operon -- 3.2 Structure and Functions of Proteins Involved in Bcs Operon -- 3.3 Diverse Nature of Bcs Operon -- 3.4 Regulation of Bacterial Nanocellulose Biosynthesis -- 3.5 Genetic Manipulation of BNC Producing Strains to Increase Yield -- 3.6 Factors for BNC Production -- 3.7 Characterization of Bacterial Nanocellulose -- 3.7.1 X-Ray Diffraction Spectroscopy (XRD) -- 3.7.2 Nuclear Magnetic Resonance (NMR) -- 3.7.3 Fourier Transform Infrared (FTIR) -- 3.7.4 Scanning Electron Microscopy (SEM) -- 3.7.5 Transmission Electron Microscopy (TEM) -- 3.7.6 Atomic Force Microscopy (AFM) -- 3.7.7 Electrophoretic Light Scattering (ELS) -- 3.7.8 Thermogravimetric Analysis (TGA) -- 3.7.9 Differential Scanning Calorimetry (DSC) -- 3.7.10 Particle Size Analysis -- 3.8 Conclusion -- References -- Chapter 4 Process and Applications of Electrospinning -- 4.1 Introduction -- 4.2 A Brief History of Electrospinning -- 4.3 Setup for the Experiment -- 4.4 Principle of the Process -- 4.5 Factors Affecting the Process of Electrospinning -- 4.5.1 Operating Parameters.
  • 4.5.1.1 Applied Voltage -- 4.5.1.2 Flow Rate -- 4.5.1.3 The Separation between the Metallic Needle's Tip and the Collector -- 4.5.2 Material Parameters -- 4.5.2.1 Polymer Concentration -- 4.5.2.2 Viscosity -- 4.5.2.3 Surface Tension -- 4.5.2.4 Conductivity -- 4.5.3 Properties of Solvents -- 4.5.3.1 Vapor Pressure -- 4.5.3.2 Allowability -- 4.5.4 Environmental Aspects -- 4.6 Electrospinning Variations -- 4.6.1 Needle-Based Electrospinning -- 4.6.1.1 Single Nozzle -- 4.6.1.2 Coaxial Electrospinning -- 4.6.1.3 Tri-Axial Electrospinning -- 4.6.1.4 Multichannel Electrospinning -- 4.6.2 Needleless Electrospinning -- 4.6.3 Melt Electrospinning -- 4.6.4 Emulsion Electrospinning -- 4.6.5 Solution Electrospinning -- 4.7 Applications of Electrospun Fibers -- 4.7.1 Biomedical Applications -- 4.7.1.1 Drug Delivery Systems -- 4.7.1.2 Tissue Engineering -- 4.7.1.3 Wound Healing -- 4.8 Summary, Conclusion and Future Prospects -- References -- Chapter 5 Development of Nanocellulose-Based Nanocomposites and Its Properties -- 5.1 Introduction -- 5.1.1 Nanocomposite -- 5.1.2 Nanofillers -- 5.2 Nanocellulose -- 5.2.1 Types and Nomenclature -- 5.2.2 Sources and Preparation -- 5.2.2.1 Top-Down Process -- 5.2.2.2 Bottom-Up Process -- 5.3 Nanocellulose-Based Nanocomposites -- 5.3.1 Nanocellulose Properties -- 5.3.2 Nanocomposite Fabrication -- 5.3.2.1 Solution Casting -- 5.3.2.2 Melt Mixing -- 5.3.2.3 In-Situ Polymerization -- 5.3.2.4 Electrospinning -- 5.3.2.5 Other Fabrication Techniques -- 5.4 Properties of Nanocellulose-Based Nanocomposites -- 5.4.1 Mechanical Property -- 5.4.2 Thermal Property -- 5.4.3 Barrier Property -- 5.4.4 Optical Property -- 5.4.5 Other Properties -- 5.5 Conclusion -- References -- Chapter 6 Surface Functionalization Process: Its Advantages and Disadvantages -- 6.1 Chemical Approach -- 6.1.1 Acetylation/Esterification -- 6.1.2 Polymer Grafting.
  • 6.1.3 Silylation -- 6.1.4 Acylation/Alkanoylation -- 6.1.5 Sulfonation -- 6.1.6 TEMPO-Mediated Oxidation -- 6.2 Enzymatic Approach -- 6.2.1 Direct Enzymatic Approach -- 6.2.1.1 Phosphorylation via Hexokinases -- 6.2.1.2 Cellulose Acylation/Esterification by Hydrolases -- 6.2.1.3 Esterification via Lipases -- 6.2.2 Indirect Enzymatic Approach -- 6.2.2.1 Surface Modification via Xyloglucan Endotransglucosylase -- 6.2.2.2 Grafting of Active Molecules -- 6.3 Physical Techniques -- 6.3.1 Plasma Treatment -- 6.3.2 Flame Treatment -- 6.3.3 Corona Treatment -- 6.3.4 Ion Beam Treatment -- 6.4 Conclusion -- References -- Chapter 7 Applications of Nanocellulose in Tissue Engineering and Tissue Grafting -- 7.1 Introduction -- 7.2 Nanocellulose and Its Properties -- 7.2.1 Physical Properties -- 7.2.2 Surface Chemistry -- 7.2.3 Biological Characteristics -- 7.2.3.1 Biological and Hematological Compatibility -- 7.2.3.2 In Vivo Biodegradability -- 7.3 Classification of Nanocellulose and Their Synthesis -- 7.3.1 Cellulose Nanocrystals (CNCs) -- 7.3.2 Cellulose Nanofibrils (CNFs) -- 7.3.3 Bacterial Cellulose (BC) -- 7.4 Composites Based on Nanocellulose -- 7.4.1 Nanocellulose and Graphene Composite -- 7.4.2 Nanocellulose and Polyvinyl Alcohol Composite -- 7.4.3 Nanocellulose and Chitosan Composite -- 7.5 Applications of Nanocellulose in Tissue Engineering and Tissue Grafting -- 7.5.1 Nanocellulose for Engineering Skin and Tissues -- 7.5.2 Nanocellulose for Repairing Blood Vessels -- 7.5.3 Nanocellulose in Neural Tissue Engineering -- 7.5.4 Nanocellulose in Bone Tissue Engineering -- 7.6 Limitations of Nanocellulose -- 7.6.1 Production Cost -- 7.6.2 Mechanical Properties -- 7.6.3 Scalability -- 7.6.4 Compatibility with Cells -- 7.7 Future Prospects -- 7.8 Conclusion -- References -- Chapter 8 Application of Nanocellulose for Wound Dressings -- 8.1 Introduction.
  • 8.2 Types of Wounds -- 8.3 Nanocellulose-Based Wound Dressings -- 8.3.1 Hydrogels -- 8.3.2 Sponges -- 8.3.3 Nanofibers -- 8.3.4 Hydrocolloids -- 8.3.5 Films/Membranes -- 8.3.6 3D-Printed Wound Dressings -- 8.3.7 Composites -- 8.3.8 Other Scaffolds -- 8.4 Commercialized Nanocellulose-Based Wound Dressings -- 8.5 Future Perspective and Conclusion -- Acknowledgments -- References -- Chapter 9 Use of Nanocellulose for Drug Carriers for Drug Delivery Applications -- Abbreviations -- 9.1 Introduction -- 9.2 Strategies for Drug Delivery -- 9.2.1 Active Targeting Drug Delivery -- 9.2.2 Passive Targeting Drug Delivery -- 9.3 Application of Various Biomaterials for Drug Delivery -- 9.3.1 Synthetic Biomaterials -- 9.3.2 Natural Biomaterials -- 9.4 Different Methods Involved in Nanocellulose Synthesis -- 9.4.1 Mechanical Synthesis -- 9.4.2 Chemical Synthesis -- 9.4.3 Biological Synthesis -- 9.5 Types of Nanocellulose -- 9.5.1 Cellulose Nanofibers (CNFs) -- 9.5.2 Cellulose Nanocrystals (CNCs) -- 9.5.3 Microfibrillated Cellulose (MFC) -- 9.5.4 Bacterial Nanocellulose (BNC) -- 9.6 Different Methods Used for Drug Loading/Encapsulation of Drug in Nanocellulose -- 9.6.1 1D Formulation Strategies -- 9.6.2 2D Formulation Strategies -- 9.6.3 3D Formulation Strategies -- 9.7 Importance of Nanocellulose as Drug Carrier -- 9.7.1 Biodegradability and Biocompatibility -- 9.7.2 Toxicological Concern -- 9.8 Drug Delivery via Different Nanocelluloses -- 9.8.1 Nanocellulose Aerogels -- 9.8.2 pH-Responsive Hydrogels -- 9.8.3 Injectable Hydrogels-Implants -- 9.8.4 Magnetic Nanocellulose -- 9.9 Nanocellulose-Based Drug Delivery in Pathological Disorder -- 9.9.1 Inflammation -- 9.9.2 Cancer -- 9.9.3 Bone-Related Disorder -- 9.9.4 Pulmonary Disorder -- 9.9.5 Wound Healing -- 9.9.6 Optical-Related Disease.
  • 9.10 Commercialized and Research-Associated Nanocellulose Products Reported in Clinical Trials.
  • Description based on publisher supplied metadata and other sources.
Sprache
Identifikatoren
ISBN: 1-394-17282-6, 1-394-17281-8
Titel-ID: 9925172230006463
Format
1 online resource (416 pages)