Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 3340

Details

Autor(en) / Beteiligte
Titel
Acoustic Technologies in Biology and Medicine
Auflage
First edition
Ort / Verlag
Weinheim, Germany : WILEY-VCH GmbH,
Erscheinungsjahr
[2024]
Link zum Volltext
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Fundamentals of Acoustic Wave Generation and Propagation -- 1.1 Introduction -- 1.1.1 Acoustic or Sound Waves -- 1.1.2 Dominos Effect -- 1.1.3 Elastic vs Inelastic Waves -- 1.1.4 Scope of Acoustics -- 1.2 Brief History of Acoustic Waves -- 1.2.1 Early History -- 1.2.2 History of Acoustic Streaming -- 1.2.3 History of Acoustic Radiation Force -- 1.3 What Is an Acoustic Wave? -- 1.3.1 Acoustic Parameters -- 1.3.2 Displacement, Velocity, and Pressure Fields -- 1.3.3 Wave Propagation -- 1.3.4 Wave Dissipation -- 1.3.5 Wave Dispersion -- 1.4 Modes of Acoustic Waves -- 1.4.1 Categorization Based on Frequency Range -- 1.4.2 Categorization Based on Propagation Mode -- 1.4.2.1 Longitudinal Waves -- 1.4.2.2 Shear Waves -- 1.4.2.3 Rayleigh Waves -- 1.4.2.4 Love Waves -- 1.4.2.5 Lamb Waves -- 1.4.3 Categorization Based on Wave Configuration -- 1.4.3.1 Traveling Waves -- 1.4.3.2 Standing Waves -- 1.5 Acoustic Wave Propagation and Interaction -- 1.5.1 Transmission and Reflection of Acoustic Waves -- 1.5.2 Acoustic Scattering -- 1.5.3 Acoustic Radiation -- 1.6 Acoustic Wave Attenuation -- 1.6.1 Viscoelastic Attenuation -- 1.6.2 Acousto‐Thermal Heating -- 1.6.3 Acoustic Streaming Flow -- 1.6.3.1 Eckart Streaming -- 1.6.3.2 Rayleigh Streaming -- 1.6.3.3 Bubble‐Driven Microstreaming -- 1.6.3.4 Applications of Acoustic Streaming Flow -- 1.7 Generation and Propagation of Acoustic Waves -- 1.7.1 Acoustic Waves Generation in Nature -- 1.7.2 Generation of Acoustic Waves in Lab -- 1.7.2.1 Lower‐Frequency Acoustic Waves -- 1.7.2.2 Piezoelectricity and High‐Frequency Wave Generation -- 1.8 Acoustic Waves Effects in Fluidic Media -- 1.8.1 Vibrating Membranes and Sharp‐Edge Structures -- 1.8.2 Oscillating Bubbles -- 1.8.2.1 Cavitation -- 1.8.3 Optoacoustic Imaging.
  • 1.8.4 Manifestations of Acoustic Radiation Force and Acoustic Streaming Flow -- References -- Chapter 2 Basic Theories and Physics of Acoustic Technologies -- 2.1 Introduction -- 2.2 Acoustic Waves in Solids -- 2.2.1 Governing Equation -- 2.2.2 Acoustic Waves in Non‐piezoelectric Solids -- 2.2.3 Acoustic Waves in Piezoelectric Solids -- 2.3 Acoustic Waves in Fluids -- 2.3.1 Governing Equations -- 2.3.2 Acoustic Streaming -- 2.3.2.1 Modeling Approach for Slow Streaming -- 2.3.2.2 Modeling Approach for Fast Streaming -- 2.3.3 Distinction Between Lagrangian and Eulerian Fluid Velocity and Stokes' Drift -- 2.3.4 Acoustic Streaming Near Solid Particles -- 2.3.5 Acoustic Streaming Near Fluid-Fluid Interfaces -- 2.4 Forces in Acoustofluidic Systems -- 2.4.1 Primary Acoustic Radiation Force -- 2.4.2 Secondary Acoustic Radiation Force -- 2.4.2.1 Forces Between Two Rigid Spheres -- 2.4.2.2 Forces Between Two Bubbles -- 2.4.2.3 Forces Between a Solid Particle and a Bubble -- 2.4.2.4 Forces Between a Liquid Drop and a Bubble -- 2.4.3 Hydrodynamic Drag Force -- 2.5 Conclusions and Perspectives -- References -- Chapter 3 Materials for Acoustic Wave Generation and Modulation -- 3.1 Introduction -- 3.1.1 Generation and Detection of Ultrasound -- 3.1.2 Technologies for Ultrasound Transducers -- 3.2 Piezoelectricity -- 3.2.1 Model Equations -- 3.2.1.1 Stress‐Charge Formulation -- 3.2.1.2 Strain‐Charge Formulation -- 3.2.1.3 Stress‐Field Formulation -- 3.2.1.4 Strain‐Field Formulation -- 3.2.2 The Piezoelectric Constants -- 3.2.3 Longitudinal Motion in a Piezoelectric Material -- 3.2.3.1 A Simple Piezoelectric Model -- 3.2.3.2 Waves in the Piezoelectric Material -- 3.3 Piezoelectric Materials -- 3.3.1 Piezoelectric Crystals -- 3.3.2 Piezoelectric Ceramics -- 3.3.3 Piezoelectric Polymers -- 3.3.4 Piezoelectric Composites -- 3.4 Ultrasound Transducers.
  • 3.4.1 Elements of a Transducer -- 3.4.2 The Piezoelectric Slab -- 3.4.3 Matching Layers -- 3.4.3.1 Classical Matching Layer Design -- 3.4.3.2 Multiple Matching Layer Design -- 3.4.3.3 Broadband Matching Layer Design -- 3.4.4 Backing Layer -- 3.4.5 Electrical Impedance Matching Network -- 3.5 Ultrasound Beams -- 3.5.1 Circular Aperture Transducers -- 3.5.2 Focused Transducers -- 3.5.3 Phased‐Array Transducers -- 3.6 Acoustic Lenses -- 3.6.1 Refraction by Bulky Lenses -- 3.6.1.1 Spherical Lenses -- 3.6.1.2 Ellipsoidal Lenses -- 3.6.1.3 Axicon Lenses -- 3.6.1.4 Frensel and Fraxicon Lenses -- 3.6.1.5 Lenses for Vortex Generation -- 3.6.2 Diffraction by Gratings -- 3.6.2.1 Cartesian Diffraction Grating -- 3.6.2.2 Asymmetric Diffraction Grating -- 3.6.2.3 Fresnel Zone Plates -- 3.6.2.4 Archimedean Spiral Gratings -- 3.6.2.5 Fresnel‐Spiral Zone Plate -- 3.6.3 Reflection by Curved Surfaces -- 3.6.3.1 Parabolic Reflectors -- 3.6.3.2 Ellipsoidal Reflectors -- 3.6.4 Holograms -- 3.6.4.1 Field Projections -- 3.6.4.2 Synthesis of Acoustic Images -- 3.6.4.3 Biomedical Applications of Holograms -- References -- Chapter 4 Ultrasound and Ultrasonic Imaging in Medicine: Recent Advances -- 4.1 Introduction -- 4.2 Ultrasound Waves -- 4.2.1 Types of Ultrasonic Waves -- 4.2.2 Behavior of Ultrasound Waves at Interfaces -- 4.2.3 Ultrasound Power and Intensity -- 4.2.4 Ultrasound Applications -- 4.3 Ultrasonic Imaging -- 4.3.1 Ultrasonic Imaging System -- 4.3.1.1 Transducer -- 4.3.1.2 Probes -- 4.3.1.3 Central Processing Unit -- 4.3.1.4 Output Display -- 4.3.2 Focus -- 4.3.3 Resolution -- 4.3.4 Beamforming -- 4.4 Sound‐Tissue Interactions in Ultrasonography -- 4.4.1 Reflection -- 4.4.2 Refraction -- 4.4.3 Absorption -- 4.4.4 Attenuation -- 4.4.4.1 Attenuation by Reflection, Refraction, and Deflection -- 4.4.4.2 Attenuation by Scattering -- 4.4.4.3 Attenuation by Absorption.
  • 4.4.4.4 Time Gain Reduction (TGR) and Depth Gain Reduction (DGR) -- 4.5 Ultrasonic Imaging Methods -- 4.5.1 Real‐Time Imaging -- 4.5.1.1 A‐Mode -- 4.5.1.2 M‐Mode -- 4.5.1.3 B‐Mode -- 4.5.2 Doppler Ultrasonography -- 4.5.2.1 Continuous Wave Doppler -- 4.5.2.2 Duplex Doppler -- 4.5.2.3 Color Doppler -- 4.5.3 Real‐Time Artifacts in Imaging -- 4.5.4 Factors Affecting Image Quality -- 4.6 Tissue Harmonic Imaging (THI) -- 4.6.1 The Occurrence of Harmonic Signals -- 4.6.2 The Separation of Harmonic Signals from the Main Signal -- 4.6.3 The Advantages of Harmonic Signals -- 4.7 Recent Advances in Ultrasound Imaging for Medicine -- References -- Chapter 5 Photoacoustic Imaging and Sensing for Biomedical Applications -- 5.1 Introduction -- 5.2 Photoacoustic Imaging Applications -- 5.2.1 PAI of Breast Cancer -- 5.2.1.1 In Vivo Imaging -- 5.2.1.2 Ex Vivo Imaging -- 5.2.2 PAI for Skin Imaging -- 5.2.2.1 PAI of Skin Cancer -- 5.2.2.2 PAI of Inflammatory Skin Diseases -- 5.2.2.3 PAI of Wounds -- 5.3 Photoacoustic Sensing for Biomedical Applications -- 5.3.1 Noninvasive Temperature Monitoring in Deep Tissue -- 5.3.2 Noninvasive Glucose Sensing -- References -- Chapter 6 Therapeutic Ultrasound -- 6.1 Introduction -- 6.2 Ultrasound‐Induced Bioeffects -- 6.2.1 Introduction -- 6.2.2 Thermal Effects -- 6.2.3 Mechanical Effects -- 6.2.3.1 Cavitation -- 6.2.4 Contrast‐Enhanced Effects -- 6.2.4.1 Microbubbles -- 6.2.4.2 Nanobubbles -- 6.2.4.3 Nanodroplets -- 6.2.5 Safety and Regulations -- 6.3 Therapeutic Ultrasound Applications -- 6.3.1 High‐Intensity Focused Ultrasound -- 6.3.2 Histotripsy -- 6.3.3 Shock Wave Lithotripsy -- 6.3.4 Drug Delivery and Gene Therapy -- 6.3.5 Blood-Brain Barrier Opening -- 6.3.6 Low‐Intensity Ultrasound for Neuromodulation -- 6.3.7 Bone Healing -- 6.3.8 Sonothrombolysis -- 6.3.9 Other Applications -- 6.4 Conclusions -- References.
  • Chapter 7 Application of Ultrasound‐Responsive Reagents for Drug Delivery Systems -- 7.1 Historical Background of Research on Bubble Reagents for Medicine -- 7.2 Use of Bubble Reagents as Drug Delivery Systems -- 7.2.1 Acoustic Cavitation -- 7.2.2 Importance of Inertial and Non‐inertial Cavitation in Improving Drug Permeability -- 7.2.3 Targeting and Focusing Using Acoustic Means -- 7.3 Variation of Ultrasound‐Responsive Reagents for DDS -- 7.3.1 Shell Composition -- 7.3.2 Improved Stability by Polyethylene Glycol (PEG) Modification -- 7.3.3 Modification with Targeting Ligands -- 7.3.4 Drug and Gene Loading -- 7.3.5 Extended Adaptation of Ultrasound‐Responsive Reagents -- 7.4 Research on Treatment of Diseases Using Ultrasonic Drug Delivery -- 7.4.1 Cancer -- 7.4.2 Central Nervous System Diseases -- 7.5 Conclusion -- References -- Chapter 8 Acoustic Levitation and Acoustic Holograms -- 8.1 Introduction -- 8.1.1 History of Acoustic Levitation -- 8.1.1.1 Classical Acoustic Levitator -- 8.1.1.2 Phased Array Levitator (PAL) -- 8.2 Acoustic Holograms -- 8.3 Numerical Simulation of Acoustic Levitator -- 8.3.1 Pressure Field Calculation -- 8.3.1.1 Huygens' Approach -- 8.3.1.2 Spherical Harmonics Expansion -- 8.3.1.3 Angular Spectrum Method -- 8.3.2 Acoustic Radiation Force -- 8.3.2.1 Gor'kov -- 8.3.2.2 Spherical Harmonic Approach -- 8.4 Acoustic Hologram Optimization -- 8.4.1 Optimization Example with Diff‐PAT -- 8.5 Applications in Biology and Medicine -- 8.5.1 Specimen Holding -- 8.5.2 Experiment Automation -- 8.5.3 3D Display -- 8.6 Conclusion and Future Remarks -- Acknowledgments -- References -- Chapter 9 Application of Ultrasonic Waves in Bioparticle Manipulation and Separation -- 9.1 Introduction -- 9.2 Bioparticle Manipulation -- 9.2.1 Hydrodynamic Bioparticle Manipulation -- 9.2.2 Immunological (Antigen-Antibody Reaction) Bioparticle Manipulation.
  • 9.2.3 Electrokinetic Bioparticle Manipulation.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 3-527-84130-X, 3-527-84132-6
Titel-ID: 9925172218906463
Format
1 online resource (402 pages)
Schlagworte
Sound