Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
First edition, [2024]
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Dynamics and Transport in Macromolecular Networks : Theory, Modelling, and Experiments
Auflage
First edition
Ort / Verlag
Weinheim, Germany : WILEY-VCH GmbH,
Erscheinungsjahr
[2024]
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Modeling (Visco)elasticity of Macromolecular and Biomacromolecular Networks -- 1.1 Permanent Macromolecular Networks -- 1.1.1 Mechanic Properties of a Single Polymer Chain -- 1.1.2 Statistical Models -- 1.1.3 Phenomenological Models -- 1.2 Permanent Biomacromolecular Networks -- 1.2.1 Elastic Models -- 1.2.2 Nonlinear Elasticity, Stability, and Normal Stress -- 1.3 Transient Macromolecular/Biomacromolecular Networks -- 1.3.1 Theoretical Framework -- 1.3.2 Applications -- 1.4 Outlooks -- References -- Chapter 2 Modeling Reactive Hydrogels: Focus on Controlled Degradation -- 2.1 Introduction -- 2.2 Mesoscale Modeling of Reactive Polymer Networks -- 2.2.1 Introducing Dissipative Particle Dynamics Approach for Reactive Polymer Networks -- 2.2.2 Addressing Unphysical Crossing of Polymer Bonds in DPD Along with Reactions -- 2.2.3 Modeling Cross‐linking Due to Hydrosilylation Reaction -- 2.2.4 Mesoscale Modeling of Degradation and Erosion -- 2.3 Continuum Modeling of Reactive Hydrogels -- 2.3.1 Modeling Chemo‐ and Photo‐Responsive Reactive Hydrogels -- 2.3.2 Continuum Modeling of Degradation of Polymer Network -- 2.4 Conclusions -- Acknowledgments -- References -- Chapter 3 Dynamic Bonds in Associating Polymer Networks -- 3.1 Introduction of Dynamic Bonds -- 3.1.1 Dynamic Covalent Bonds -- 3.1.2 Dynamic Noncovalent Bonds -- 3.2 Physical Insight of Dynamic Bonds -- 3.2.1 Segmental and Chain Dynamics -- 3.2.2 Phase‐Separated Aggregate Dynamics -- 3.3 Properties and Applications -- 3.3.1 Gas Separation -- 3.3.2 Adhesives and Additives -- 3.3.3 3D Printing -- 3.3.4 Polymer Electrolytes -- 3.4 Conclusion -- References -- Chapter 4 Direct Observation of Polymer Reptation in Entangled Solutions and Junction Fluctuations in Cross‐linked Networks -- 4.1 Introduction.
  • 4.2 Reptation in Entangled Solutions -- 4.2.1 Direct Confirmation of the Reptation Model -- 4.2.2 Tube Width Fluctuations -- 4.2.3 Dependence of Tube Width on Chain Position -- 4.2.4 Tube Width under Shear -- 4.2.5 Interactions Between Reptating Polymer Chains -- 4.3 Dynamic Fluctuations of Cross‐links -- 4.3.1 Dynamics Probed by Neutron Scattering -- 4.3.2 Dynamics Probed by Direct Imaging -- 4.4 Conclusion -- Acknowledgments -- Conflict of Interest -- References -- Chapter 5 Recent Progress of Hydrogels in Fabrication of Meniscus Scaffolds -- 5.1 Introduction -- 5.2 Microstructure and Mechanical Properties of Meniscus -- 5.2.1 Meniscus Anatomy, Biochemical Content, and Cells -- 5.2.2 Biomechanical Properties of the Meniscus -- 5.3 Biomaterial Requirements for Constructing Meniscal Scaffolds -- 5.4 Hydrogel‐Based Meniscus Scaffolds -- 5.4.1 Providing Matrix for Cell Growth and Biomacromolecules Delivery -- 5.4.1.1 Injectable Hydrogel‐Based Meniscus Tissue‐Engineering Scaffolds -- 5.4.1.2 High Strength and Biodegradable Hydrogel‐Based Meniscus Scaffolds -- 5.4.1.3 3D‐Printed Polymer/Hydrogel Composite Tissue‐Engineering Scaffolds -- 5.4.2 Providing Load‐Bearing Capability -- 5.4.2.1 Polyvinyl Alcohol (PVA) Hydrogel‐Based Meniscus Scaffolds -- 5.4.2.2 Poly(N‐acryloyl glycinamide) (PNAGA) Hydrogel‐Based Meniscus Scaffolds -- 5.4.2.3 Poly(N‐acryloylsemicarbazide) (PNASC) Hydrogel‐Based Meniscus Scaffold -- 5.4.2.4 Other Systems -- 5.5 Mimicking Microstructure: The Key to Constructing the Next‐Generation Meniscus Scaffolds -- 5.6 Conclusion -- References -- Chapter 6 Strong, Tough, and Fast‐Recovery Hydrogels -- 6.1 Current Progress on Strong and Tough Hydrogels -- 6.2 Polymer‐Supramolecular Double‐Network Hydrogels -- 6.3 Hybrid Networks with Peptide‐Metal Complexes -- 6.4 Hydrogels Cross‐Linked with Hierarchically Assembled Peptide Structures.
  • 6.5 Outlook -- References -- Chapter 7 Diffusio‐Mechanical Theory of Polymer Network Swelling -- 7.1 Introduction -- 7.2 Swelling Model -- 7.2.1 General Theoretical Framework -- 7.2.1.1 Spherical Gel -- 7.2.1.2 Cylindrical Gel -- 7.2.1.3 Disk‐Shaped Gel -- 7.2.2 Diffusio‐Mechanical Model for Small Deformation -- 7.2.2.1 Spherical Gel -- 7.2.2.2 Cylindrical Gel -- 7.2.2.3 Disk‐Shaped Gel -- 7.3 Results -- 7.4 Perspective -- 7.5 Conclusion -- Acknowledgments -- References -- Chapter 8 Theoretical and Computational Perspective on Hopping Diffusion of Nanoparticles in Cross‐linked Polymer Networks -- 8.1 Introduction -- 8.2 2010s' Theories of Nanoparticle Hopping Diffusion -- 8.2.1 Scaling Theory by Cai, Paniukov, and Rubinstein -- 8.2.1.1 Confinement by Network as Attachment to Virtual Chains -- 8.2.1.2 Hopping Diffusion as Successive Individual Hopping Events -- 8.2.1.3 Beyond Homogeneous, Entanglement‐Free, and Dry Cross‐linked Networks -- 8.2.2 Microscopic Theory by Dell and Schweizer -- 8.3 Recent Computational and Theoretical Work -- 8.3.1 Evaluating Cai-Paniukov-Rubinstein and Dell-Schweizer Theories by Simulations -- 8.3.2 Exploring New Aspects of Cross‐linked Networks - Stiffness and Geometry -- 8.4 Open Questions and Future Research Directions -- 8.4.1 Network Strands with Nonlinear Architectures -- 8.4.2 Sticky and Polymer‐Tethered Nanoparticles -- 8.4.3 Nanoparticles with Anisotropic Shape -- 8.4.4 Active Nanoparticles - Nonequilibrium Effects -- 8.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 9 Molecular Dynamics Simulations of the Network Strand Dynamics and Nanoparticle Diffusion in Elastomers -- 9.1 Introduction -- 9.2 Structures and Dynamics of Model Elastomer Networks -- 9.2.1 Randomly Cross‐linked Elastomer Networks -- 9.2.1.1 Network Models and Simulation Methodology -- 9.2.1.2 Network Topology.
  • 9.2.1.3 Effect of Cross‐link Density on Network Dynamics -- 9.2.1.4 Effect of Cross‐link Distribution on Network Dynamics -- 9.2.1.5 Effect of Temperature on Network Dynamics -- 9.2.2 End‐linked Elastomer Networks -- 9.2.2.1 Network Models and Simulation Methodology -- 9.2.2.2 Network Topology -- 9.2.2.3 Network Dynamics -- 9.3 Diffusion Dynamics of Nanoparticles in Elastomers: Melts and Networks -- 9.3.1 Diffusion of Nanoparticles in Elastomer Melts -- 9.3.1.1 Models and Simulation Methodology -- 9.3.1.2 Size Effect on Nanoparticle Diffusion -- 9.3.1.3 Effect of Surface Grating on Nanoparticle Diffusion -- 9.3.1.4 Nanoparticle Diffusion in Bottlebrush Elastomers -- 9.3.2 Diffusion of Nanoparticles in Elastomer Networks -- 9.3.2.1 Models and Simulation Methodology -- 9.3.2.2 Size Effect on Nanoparticle Diffusion -- 9.3.2.3 Nanoparticle Diffusion in Attractive Networks -- 9.4 Conclusions -- Acknowledgments -- References -- Chapter 10 Experimental and Theoretical Studies of Transport of Nanoparticles in Mucosal Tissues -- 10.1 Introduction -- 10.2 Enhancing Diffusivity of Deformable Particles to Overcome Mucus Barriers Via Adjusting Their Rigidity -- 10.2.1 The Preparation of the Hybrid NPs with Various Rigidities -- 10.2.2 The Diffusivity of Hybrid NPs with Different Rigidity in Mucus -- 10.2.3 The Interaction Between NPs with Different Rigidity and Mucus Network -- 10.2.4 The Theoretical Model to Describe the Diffusion Behavior of Deformable Nanoparticles in Adhesion Network -- 10.2.4.1 Shape Distribution of NPs -- 10.2.4.2 Diffusion Model -- 10.2.5 Summary -- 10.3 The Effect of the Shape on the Diffusivity of NPs in Mucus -- 10.3.1 The Diffusion Behaviors of NPs with Various Shapes in Mucus -- 10.3.2 The Diffusion Mechanisms of NPs with Different Shape in Biological Hydrogels.
  • 10.3.3 Theoretical Model of Diffusion of Rod‐Like Nanoparticles in Polymer Networks -- 10.3.3.1 Nonadhesive Diffusion Model -- 10.3.3.2 Adhesive Diffusion Model -- 10.3.4 The Effect of the Surface Polyethylene Glycols (PEGs) Distribution on the Diffusivity of Rod‐Like NPs -- 10.3.5 Summary -- 10.4 Conclusion and Outlook -- References -- Chapter 11 Physical Attributes of Nanoparticle Transport in Macromolecular Networks: Flexibility, Topology, and Entropy -- 11.1 Introduction -- 11.2 Effects of the Chain Flexibility of Strands -- 11.2.1 Dynamical Heterogeneity of a Semiflexible Network -- 11.2.2 Nonmonotonic Feature -- 11.2.3 Validation by MC Simulations and Experimental Data -- 11.3 Effects of Network Topology -- 11.3.1 Analytical Model for Free Energy Landscape -- 11.3.2 Network Topology and Free Energy Landscape -- 11.3.3 Topology‐Dictated Scaling Regimes of Free Energy Change -- 11.3.4 Topology‐Mediated Dynamical Regimes -- 11.4 Summary and Outlook -- Acknowledgments -- References -- Index -- EULA.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 3-527-83954-2, 3-527-83956-9
OCLC-Nummer: 1412622121
Titel-ID: 9925172216206463
Format
1 online resource (320 pages)
Schlagworte
Bioinformatics, Genomics