Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 74

Details

Autor(en) / Beteiligte
Titel
Mössbauer Spectroscopy : Applications in Chemistry and Materials Science
Auflage
1st ed
Ort / Verlag
Newark : John Wiley & Sons, Incorporated,
Erscheinungsjahr
2023
Link zum Volltext
Beschreibungen/Notizen
  • Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Application of Mössbauer Spectroscopy to Energy Materials -- 1.1 Introduction -- 1.2 Mössbauer Spectroscopy for Li‐ion and Na‐ion Batteries -- 1.2.1 Characterization of Electrode Materials and Electrochemical Reactions -- 1.2.2 Tin‐Based Negative Electrode Materials for Li‐ion Batteries -- 1.2.2.1 Electrochemical Reactions of Lithium with Tin -- 1.2.2.2 Tin Oxides -- 1.2.2.3 Tin Borophosphates -- 1.2.2.4 Tin‐Based Intermetallics -- 1.2.3 Iron‐Based Electrode Materials -- 1.2.3.1 LiFePO4 as Positive Electrode Material for Li‐ion Batteries -- 1.2.3.2 Fe1.19PO4(OH)0.57(H2O)0.43/C as Positive Electrode Material for Li‐ion Batteries -- 1.2.3.3 Na1.5Fe0.5Ti1.5(PO4)3/C as Electrode Material for Na‐ion Batteries -- 1.3 Mössbauer Spectroscopy of Tin‐Based Catalysts -- 1.3.1 Reforming Catalysis -- 1.3.2 Redox Properties of Pt‐Sn Based Catalysts -- 1.3.3 Trimetallic Pt‐Sn‐In Based Catalysts -- 1.4 Conclusion -- Acknowledgments -- References -- Chapter 2 Mössbauer Spectral Studies of Iron Phosphate Containing Minerals and Compounds -- 2.1 Introduction -- 2.2 Thermodynamic Properties of Iron Phosphate Containing Compounds -- 2.3 Room Temperature Mössbauer Spectra of Iron Phosphate Containing Minerals -- 2.4 Analysis of Magnetically Ordered Mössbauer Spectra -- 2.5 Structural and Thermodynamic Properties of the Polymorphs of FePO4 -- 2.5.1 Polymorphs of FePO4 -- 2.6 Mössbauer Spectra of α‐FePO4 -- 2.7 Magnetic Structure of α‐FePO4, Obtained by Mössbauer Spectroscopy -- 2.7.1 Magnetic Structure of α‐FePO4 -- 2.8 Temperature Dependence of the α‐FePO4 Structure Tilt Angle -- 2.9 Mössbauer Spectral Studies on Metastable Polymorphs of FePO4 -- 2.9.1 Crystallographic Structures of Two Polymorphs of FePO4·2H2O.
  • 2.9.2 Preparation and Crystallographic Structures of the Two Polymorphs, γ‐FePO4 and ζ‐FePO4 -- 2.9.3 Mössbauer Spectral Studies of FePO4 Metastable Polymorphs -- 2.9.4 Preparation and Mössbauer Spectra of Synthetic Heterosite, (Fe,Mn)PO4 -- 2.9.5 Fits of the Magnetic Mössbauer Spectra of η‐Fe0.9Mn0.1PO4 -- 2.10 Mössbauer Spectral Studies of Various Iron Phosphate Compounds -- 2.10.1 Mössbauer Spectral Properties of α‐Fe2(PO4)O -- 2.10.2 Mössbauer Spectral Properties of Fe3(PO4)O3 -- 2.10.3 Preparation and Structural Properties of Fe9(PO4)O8 -- 2.10.4 Mössbauer Spectral Properties of Fe9(PO4)O8 -- Acknowledgments -- References and Notes -- Chapter 3 Mössbauer Spectroscopic Investigation of Fe‐Based Silicides -- 3.1 Introduction -- 3.2 Mössbauer Spectroscopic Investigation of Iron Silicides Prepared By Mechanical Alloying and Heat Treatment -- 3.3 Mössbauer Spectra of Iron Silicide on Silica Prepared by Pyrolysis of Ferrocene‐Polydimethylsilane Composites -- 3.4 Synthesis and Mössbauer Spectra of Iron Silicides by Temperature‐Programmed Silicification -- 3.5 Mössbauer Spectroscopic Investigation of Doped Iron Silicides -- 3.6 Conclusion and Perspective -- References -- Chapter 4 Mössbauer Spectroscopy of Catalysts -- 4.1 Introduction -- 4.2 Principles of the Mössbauer Effect and Outlook of Its Application for Catalyst Studies -- 4.2.1 Brief Overview of the Basics of Mössbauer Spectroscopy -- 4.2.2 Mössbauer Spectroscopy from the Point of View of Catalyst Studies - Particular Features -- 4.2.3 The Probability of the Mössbauer Effect - f‐Factor and Size Effects -- 4.2.4 Variants of the Technique -- 4.2.4.1 57Co Emission Spectroscopy -- 4.2.4.2 Synchrotron‐Based NFS (Nuclear Forward Scattering) -- 4.2.4.3 Conversion Electron Mössbauer Spectroscopy -- 4.2.5 Technical Implementations - Experimental Conditions -- 4.3 Heterogeneous Catalysts.
  • 4.3.1 Sites on Supported Particles with Different Participation in Catalytic Processes -- 4.3.2 Collective Effects in Particles (Magnetism) -- 4.3.3 Case Studies -- 4.3.3.1 Metals and Alloys -- 4.3.3.2 Oxide Catalysts -- 4.3.3.3 Catalysts with Fe-N, Fe-C, and Fe-N-C Centers -- 4.4 Biocatalysts - Enzymes -- 4.5 Homogeneous Catalysts - Frozen Solutions -- 4.5.1 Studies on Reaction Intermediates - Time‐Resolved Freeze‐Quenched Spectra -- 4.6 Conclusions -- Acknowledgment -- References -- Chapter 5 Application of Mössbauer Spectroscopy in Studying Catalysts for CO Oxidation and Preferential Oxidation of CO in H2 -- 5.1 Introduction -- 5.2 Application of Mössbauer Spectroscopy in CO Oxidation -- 5.2.1 57Fe Mössbauer Spectroscopy -- 5.2.2 119Sn Mössbauer Spectroscopy -- 5.2.3 197Au Mössbauer Spectroscopy -- 5.2.4 193Ir Mössbauer spectroscopy -- 5.3 Application of Mössbauer Spectroscopy in PROX -- 5.3.1 PtFe‐Containing Catalysts -- 5.3.2 Au‐Based Catalysts -- 5.3.3 IrFe‐Containing Catalysts -- 5.3.3.1 Porous Carbon Supported IrFe Catalysts -- 5.3.3.2 SiO2 and Al2O3 Supported IrFe Catalysts -- 5.3.4 CuO/CeO2 with Fe2O3 Additive -- 5.4 Concluding Remarks -- Acknowledgments -- References -- Chapter 6 Application of 57Fe Mössbauer Spectroscopy in Studying Fe-N-C Catalysts for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells -- 6.1 Introduction -- 6.2 Advanced 57Fe Mössbauer Spectroscopy Technique -- 6.2.1 Room Temperature 57Fe Mössbauer Spectroscopy -- 6.2.2 Low Temperature and Computational 57Fe Mössbauer Spectroscopy -- 6.2.3 In Situ Electrochemical 57Fe Mössbauer Spectroscopy -- 6.3 Characterization of Fe-N-C Using 57Fe Mössbauer Spectroscopy -- 6.3.1 Identification of Active Sites -- 6.3.2 Investigation of Degradation Mechanism -- 6.3.3 Optimization for Synthesis of Fe-N-C -- 6.3.3.1 Precursor Composition -- 6.3.3.2 Heat Treatment.
  • 6.4 Summary and Perspective -- Acknowledgments -- References -- Chapter 7 197Au Mössbauer Spectroscopy of Thiolate‐protected Gold Clusters -- 7.1 Introduction -- 7.2 Synthesis of Thiolate Protected Gold Clusters -- 7.3 197Au Mössbauer Spectroscopy of Gold Nano‐clusters -- 7.3.1 Experimental Procedure of 197Au Mössbauer Spectroscopy -- 7.3.2 197Au Mössbauer Spectra of Aun(SG)m (n &amp -- equals -- 10∼55) -- 7.3.3 Molecular Structure and 197Au Mössbauer Spectra of Au10(SG)10 -- 7.3.4 Molecular Structure and 197Au Mössbauer Spectra of Au25(SG)18 -- 7.3.5 Structural Evolution of Aun(SG)m (n &amp -- equals -- 10∼55) Based on 197Au Mössbauer Spectroscopy -- 7.3.6 197Au Mössbauer Spectra of Au24Pd1(SC12H25)18 -- 7.3.7 197Au Mössbauer Spectra of Aun(SC12H25)m -- 7.4 Conclusion -- Acknowledgments -- References -- Chapter 8 197Au Mössbauer Spectroscopy of Gold Mixed‐Valence Complexes, Cs2[AuIX2][AuIIIY4](X, Y &amp -- equals -- Cl, Br, I) and [NH3(CH2)nNH3]2[(AuII2)(AuIIII4) (I3)2] (n &amp -- equals -- 7, 8) -- 8.1 Introduction -- 8.2 Experimental Procedure -- 8.2.1 Synthesis and Characterization -- 8.2.1.1 Cs2[AuIX2][AuIIIY4] (X, Y &amp -- equals -- Cl, Br, I) -- 8.2.1.2 [NH3(CH2)nNH3]2[(AuII2)(AuIIII4)(I3)2] (n &amp -- equals -- 7, 8) -- 8.2.2 197Au Mössbauer Spectroscopy -- 8.3 Crystal Structure of Cs2[AuIX2][AuIIIY4] (X, Y &amp -- equals -- Cl, Br, I) -- 8.4 Chemical Bond of Au−X in [AuIX2]− and [AuIIIX4]− -- 8.5 Mössbauer Parameters of 197Au in [AuIX2]− and [AuIIIX4]− -- 8.5.1 Mössbauer Parameters of 197Au in (C4H9)4N[AuIX2] and (C4H9)4N[AuIIIX4] -- 8.5.1.1 Isomer Shift -- 8.5.1.2 Quadrupole Splitting -- 8.5.2 Mössbauer Parameters of 197Au in Cs2[AuIX2][AuIIIX4] (X &amp -- equals -- Cl, Br, I) -- 8.5.2.1 Isomer Shift -- 8.5.2.2 Quadrupole Splitting -- 8.5.2.3 Analysis of 197Au Mössbauer Parameters for Cs2[AuIX2][AuIIIX4].
  • 8.6 Charge Transfer Interaction in Cs2[AuIX2][AuIIIX4] (X &amp -- equals -- Cl, Br, I) -- 8.7 197Au Mössbauer Spectra of Cs2[AuIX2][AuIIIY4] (X, Y &amp -- equals -- Cl, Br, I) -- 8.7.1 Isomer Shift of AuI in Cs2[AuIX2][AuIIIY4] -- 8.7.2 Isomer Shift of AuIII in Cs2[AuIX2][AuIIIY4] -- 8.7.3 Quadrupole Splitting of AuI in Cs2[AuIX2][AuIIIY4] -- 8.7.4 Quadrupole Splitting of AuIII in Cs2[AuIX2][AuIIIY4] -- 8.8 Single Crystal 197Au Mössbauer Spectra of Cs2[AuII2][AuIIII4] -- 8.8.1 Comparison of 197Au Mössbauer Spectra Between Single Crystal and Powder Crystal -- 8.8.2 Sign of EFG for AuI in [AuII2]− and AuIII in [AuIIIX4]− -- 8.9 197Au Mössbauer Spectra of Cs2[AuIX2][AuIIIX4] (X &amp -- equals -- Cl, I) Under High Pressures -- 8.9.1 Phase Diagram of Cs2[AuIX2][AuIIIX4] (X &amp -- equals -- Cl, Br, I) -- 8.9.2 Origin of Metallic Mixed‐Valence State in Cs2[AuICl2][AuIIICl4] -- 8.9.3 Au Valence Transition in Cs2[AuII2][AuIIII4] -- 8.10 197Au Mössbauer Spectra of [NH3(CH2)nNH3]2[(AuII2)(AuIIII4)(I3)2] (n &amp -- equals -- 7, 8) -- 8.11 Conclusion -- Acknowledgments -- References -- Chapter 9 Temperature‐ and Photo‐Induced Spin‐Crossover in Molecule‐Based Magnets -- 9.1 Introduction -- 9.2 Spin‐Crossover Phenomena in Cesium Iron Hexacyanidochromate Prussian Blue Analog -- 9.3 Light‐Induced Spin‐Crossover Magnet in Iron Octacyanidoniobate Bimetal Assembly -- 9.4 Chiral Photomagnetism and Light‐Controllable Second Harmonic Light in Iron Octacyanidoniobate Bimetal Assembly -- 9.5 Conclusion and Perspective -- References -- Chapter 10 Developing a Methodology to Obtain New Photoswitchable Fe(II) Spin Crossover Complexes -- 10.1 Introduction and Context -- 10.2 Introduction to a New Photo‐responsive Anion: psca -- 10.3 Combining Fe(II) and psca Together in a Single Compound -- 10.4 Fe(II) Mononuclear Complexes with DMPP and psca Ligands.
  • 10.5 1D Fe(II) Coordination Polymer with psca as Non‐Coordinated Anions.
  • Description based on publisher supplied metadata and other sources.
Sprache
Identifikatoren
ISBN: 3-527-82495-2, 3-527-82494-4
Titel-ID: 9925172188706463
Format
1 online resource (333 pages)