Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 25

Details

Autor(en) / Beteiligte
Titel
Advanced Frequency Regulation Strategies in Renewable-Dominated Power Systems
Auflage
First edition
Ort / Verlag
London : Academic Press,
Erscheinungsjahr
[2024]
Link zum Volltext
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Intro -- Advanced Frequency Regulation Strategies in Renewable-Dominated Power Systems -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Overview of the renewable-dominated power systems and their frequency regulation issues -- 1.1. Introduction -- 1.1.1. Contribution of renewable energy to global power generation -- 1.1.2. Contribution of renewable energy to India's power generation -- 1.2. Characteristics of RESs integration in PSs -- 1.2.1. Benefits -- 1.2.2. Challenges -- 1.2.3. Solutions -- 1.3. Frequency regulation issues due to the integration of RES in PSs -- 1.3.1. Energy storage technologies for RES integration -- 1.4. Role of flexible AC transmission systems for RES integration -- 1.5. Robust controllers for frequency regulation issue -- 1.6. Future prospects of renewable-dominated power systems -- 1.7. Conclusion -- References -- Chapter 2: Impacts of high renewable energy penetration on power system flexibility and strategies for frequency control -- 2.1. Introduction -- 2.2. Effects of growing renewable penetration on power system -- 2.2.1. Effect of wind energy conversion systems -- 2.2.2. Effect of solar photovoltaic systems -- 2.3. Flexibility provision -- 2.3.1. Demand response modeling -- 2.3.2. Flexible coal, natural gas, and nuclear power plants -- 2.3.3. Curtailment of RE generation -- 2.3.4. Strengthening and expanding the transmission network -- 2.4. Conclusion -- References -- Further reading -- Chapter 3: Effective frequency control in renewable dominated power systems -- 3.1. Introduction -- 3.1.1. Literature review -- 3.1.2. Key contributions -- 3.1.3. Chapter organization -- 3.2. Effect of inertia on frequency stability -- 3.3. Frequency criteria based on grid codes -- 3.4. Participation of renewable energy sources in frequency control -- 3.4.1. Deloading technique -- 3.4.1.1. PV deloading.
  • 3.4.1.2. WT deloading -- 3.4.2. Energy storage systems -- 3.4.2.1. Electrical storage elements -- 3.4.2.2. Mechanical storage elements -- 3.4.2.3. Chemical storage elements -- 3.4.3. Demand response -- 3.4.4. Variable speed wind turbines and inertial response -- 3.4.4.1. Droop control -- 3.4.4.2. Hidden inertia emulation -- 3.4.4.3. Fast power reserve -- 3.5. Modeling of RESs for frequency control -- 3.5.1. Variable speed wind turbine -- 3.5.2. PV system -- 3.5.3. Energy storage systems -- 3.6. Conventional generation with steam turbines and hydroturbines -- 3.6.1. Primary frequency control loop -- 3.6.2. Steam turbines -- 3.6.3. Hydroturbines -- 3.7. Application of metaheuristic optimization on frequency control -- 3.7.1. Objective function and constraints -- 3.7.2. Performance measures -- 3.8. Case study for two-area power system -- 3.8.1. Bonobo algorithm results for sudden load change -- 3.9. Conclusions and future prospective -- Appendix -- System parameters -- References -- Chapter 4: Nonlinear resilient frequency controller for hybrid power system -- 4.1. Introduction -- 4.2. Small-signal stability modeling and control methodology -- 4.2.1. Wind power generator -- 4.2.2. Diesel engine generator -- 4.2.3. Multi-loop FOC -- 4.2.4. Disturbance observer -- 4.3. Optimization technique -- 4.3.1. Generation of initial population -- 4.3.2. Updating phase -- 4.3.3. Dynamic foraging phase -- 4.3.4. SSA with quasi-oppositional learning -- 4.4. Kharitonov's theorem -- 4.4.1. Implementation steps of Kharitonov's theorem in MATLAB -- 4.5. Results and discussion -- 4.5.1. Empirical analysis for deciding the boundary value of controller settings -- 4.5.2. Competitiveness assessment of evolutionary algorithms -- 4.5.3. Comparative study among various frequency controllers -- 4.5.4. Controller's performance study with uncertain plant perturbations.
  • 4.5.5. Robustness study -- 4.5.6. Effect of time-delay on the frequency output -- 4.5.7. Assessment of controller performance following realistic load disturbance -- 4.6. Conclusion -- 4.6.1. Future extension of present work -- Appendix 1: State-space modeling -- A.1. Coupling shaft -- A.2. Linearized approximation of DEG -- A.3. Studied coupled WDG system with WTG -- Appendix 2: Applied optimization and WDG system's input parameters -- Appendix 3 -- References -- Chapter 5: Design of an I+Fuzzy based PD control strategy for damping power system oscillations in a networked environmen ... -- 5.1. Introduction -- 5.1.1. Preview -- 5.1.2. Status of research and motivation -- 5.1.3. Contributions made in current work -- 5.1.4. Chapter organization -- 5.2. Load frequency control: An important aspect of power system -- 5.3. Description of I+Fuzzy based PD controller structure -- 5.4. Application of metaheuristic optimization algorithms in the backdrop of LFC -- 5.4.1. Overview of metaheuristic optimization techniques and their role in tackling the frequency regulation issue in mod ... -- 5.4.2. Gradient-based optimizer (GBO) -- 5.5. Case studies -- 5.5.1. Test System-I -- 5.5.1.1. Thermal power system based on solar energy -- 5.5.1.2. Power system based on wind energy -- 5.5.1.3. Aqua electrolyzer -- 5.5.1.4. Fuel cell -- 5.5.2. Simulation studies, results, and analysis pertaining to Test System-I -- 5.5.2.1. Responses of system due to intermittent change in power generation by RES -- 5.5.2.2. Dynamic responses due to random disturbances in the system -- Robust analysis -- Sensitivity analysis -- 5.5.3. Test System-II -- 5.5.3.1. Photovoltaic generating unit -- 5.5.4. Simulation studies, results, and analysis of Test System-II -- 5.5.4.1. System responses due to intermittent change in power generation by RES.
  • 5.5.4.2. Dynamic responses due to random disturbances in the system -- Robust analysis -- Sensitivity analysis -- 5.6. Summary -- 5.7. Future scope -- Appendix: System parameter values -- Test System-I [1,25] -- Test System-II [28,29] -- References -- Chapter 6: Utilization of solid oxide fuel cell in amalgamated frequency-voltage control of RES-based restructure -- 6.1. Introduction -- 6.2. System investigations -- 6.2.1. Outline of AGC as part of the restructured situation -- 6.2.2. Amalgamated ALFC-AVR system -- 6.3. TIDN-FOID controller -- 6.4. Structure investigation with SHO -- 6.5. Results and assessment -- 6.5.1. Assessment of dynamic outcomes of ALFC and AVR amalgamated system with PIDN, TIDN, and TIDN-FOID controllers in po ... -- 6.5.2. Assessment of dynamic responses of ALFC and AVR amalgamated system with PIDN, TIDN, and TIDN-FOID controllers in b ... -- 6.5.3. Evaluation of dynamic responses of ALFC and AVR amalgamated system with PIDN, TIDN, and TIDN-FOID controllers in c ... -- 6.5.4. Evaluation of dynamic responses of ALFC and AVR amalgamated system with different algorithms FA, PSO, and SHO usin ... -- 6.5.5. Evaluation of influence of AVR on dynamic outcomes of system using TIDN-FOID controller -- 6.5.6. Assessment of dynamic responses of ALFC and AVR amalgamated system using TIDN-FOID controller in bilateral structu ... -- 6.5.7. Evaluation of dynamic outcomes of ALFC and AVR amalgamated system using TIDN-FOID controller in bilateral structur ... -- 6.5.8. Sensitivity assessment of amalgamated ALFC-AVR system using TIDN-FOID controller in bilateral structure with inclu ... -- 6.5.8.1. Sensitivity assessment under varied loading circumstances -- 6.5.8.2. DPM sensitivity assessment -- 6.6. Conclusion -- Appendix -- References -- Chapter 7: Price-based frequency regulation strategies in renewable-dominated power systems.
  • 7.1. Introduction to price-based frequency regulation strategies in the Indian electricity market -- 7.2. Review of price-based frequency regulation strategies in modern electricity market -- 7.3. Various control strategies for effective control under price-based frequency regulation scenario -- 7.4. Issues and technical challenges in renewable integrated modern power system operation and control under price-based ... -- 7.5. The proposed control scheme -- 7.6. Test system -- 7.7. Results and discussion -- 7.8. Conclusions -- 7.9. Future scope -- Appendix -- References -- Chapter 8: Provision of kinetic energy support from wind turbines for frequency regulation services in the modern grid -- 8.1. Introduction -- 8.2. Grid integration and wind energy production in India and the world -- 8.3. Integrating large-scale wind energy into the electrical system -- 8.3.1. Types of generators used to produce power from wind -- 8.3.2. Variety of wind turbine generator types (WTGs) -- 8.4. The significance of variable speed variable pitch wind turbines to frequency regulation and enhanced load-frequency ... -- 8.5. Power quality issues and difficulties with the expanded entrance of wind energy to the grid -- 8.5.1. Various frequency control techniques for variable-speed wind turbines -- 8.6. Up-to-date methods for resolving frequency control challenges brought on by wind generation in contemporary power ne ... -- 8.7. Conclusions and future scope -- References -- Chapter 9: Robust frequency regulation against cyberattack uncertainties in modern power system grids -- 9.1. Introduction -- 9.2. Modern power system grid structure -- 9.3. Cyberattack uncertainty representation -- 9.3.1. Scale-categorized attacks -- 9.3.2. Ramp-categorized attacks -- 9.3.3. Pulse-categorized attacks -- 9.3.4. Random-categorized attacks.
  • 9.3.5. Constant time delay categorized attacks.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 9780323950558, 9780323950541
Titel-ID: 9925129267906463
Format
1 online resource (400 pages)
Schlagworte
Electric power systems, Renewable energy sources