Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 1139

Details

Autor(en) / Beteiligte
Titel
Fabrication and functionalization of advanced tubular nanofibers and their applications
Ort / Verlag
London, England ; : Academic Press,
Erscheinungsjahr
[2023]
Link zum Volltext
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Intro -- Half title -- Title -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1 The review and introduction of hypercrosslinked polymer -- 1.1 Introduction -- 1.2 Synthesis of different types of hypercrosslinked polymers -- 1.2.1 Macroporous and gel type polystyrene -- 1.2.2 Third generation hypercrosslinked polystyrene -- 1.2.3 Other DVB highly crosslinked polymer networks -- 1.3 Hypercrosslinked polymer by polycondensation -- 1.4 Properties of the hypercrosslinked polymers -- 1.4.1 The effect of dilution on the initial system -- 1.4.2 The effect of initial copolymer network -- 1.4.3 The effect of crosslinking distribution -- 1.4.4 Role of crosslinking bridging structure and stresses of hypercrosslinked polymer -- 1.4.5 The effect of reaction medium -- 1.4.6 The effect of molecular weight -- 1.5 Morphology of hypercrosslinked polymers -- 1.5.1 Morphology of surface modification of polymer resins -- 1.5.2 Morphology of tubular hypercrosslinked porous polymer -- 1.5.3 Morphology of mesoporous hypercrosslinked polymers -- 1.5.4 Morphology of hollow structured hypercrosslinked polymer -- 1.6 Applications of hypercrosslinking polymers -- 1.6.1 Sensing -- 1.6.2 Photocatalysis -- 1.6.3 Drug delivery -- 1.6.4 Membrane gas separation -- 1.6.5 Removal of pollutants -- 1.6.6 Capturing carbon dioxide gas -- 1.7 Future consideration and challenges -- References -- Chapter 2 Novel synthetic method for tubular hypercrosslinked polymer nanofibers and its mechanism -- 2.1 Introduction -- 2.2 The study on hypercrosslinked microporous materials with regular morphology -- 2.2.1 Research progress of hypercrosslinked microporous polymer microspheres -- 2.2.2 Research progress of hypercrosslinked microporous organic/inorganic composite microspheres -- 2.2.3 Design and synthesis of hypercrosslinked microporous nanofibers.
  • 2.3 Preparation and formation mechanism of hypercrosslinked tubular nanofibers -- 2.4 Application of hypercrosslinked tubular nanofibers -- 2.5 Summary and prospect -- References -- Chapter 3 Design and preparation of self-driven BSA surface imprinted tubular nanofibers and their specific adsorption performance -- 3.1 Introduction -- 3.2 Surface protein imprinting technique -- 3.2.1 Functional carrier -- 3.2.2 Surface design and construction of carrier materials -- 3.2.3 Composition of an imprinted polymer layer -- 3.3 Concept of self-driven protein imprinting -- 3.4 Self-driven surface imprinted tubular carbon nanofibers -- 3.5 Self-driven surface imprinted magnetic tubular carbon nanofibers -- 3.6 Surface imprinted manganese dioxide-loaded tubular carbon fibers -- 3.7 Summary and prospect -- References -- Chapter 4 Functional carbon nano-material as efficient metal ion adsorbent from wastewater -- 4.1 Introduction -- 4.2 Functional group modifications and synthetic methods -- 4.2.1 Carbon nanotubes -- 4.2.2 Titanate nanotubes -- 4.2.3 Waste paper carbon -- 4.2.4 Graphene oxide-nano sheets -- 4.2.5 Activated sludge modified graphene-oxide -- 4.2.6 Metal-oxides -- 4.3 Preparation and functionalization of adsorbents from biowastes -- 4.3.1 Extracellular polymer matrix -- 4.3.2 Biochar -- 4.3.3 Phosphate bacteria biochar -- 4.3.4 Magnetic biochar composites -- 4.4 Preparation and functionalization of inorganic/organic adsorbents -- 4.4.1 Phosphoryl functionalized silica -- 4.5 Our contribution -- References -- Chapter 5 Preparation of carbon tubular nanofibers and their application for efficient enrichment of uranium from aqueous solution -- 5.1 Introduction -- 5.2 Synthesis of CNF -- 5.2.1 Synthesis of CNF using catalyst -- 5.2.2 Synthesis of CNF by electro-spinning -- 5.2.3 Mechanism and control -- 5.2.4 Crosslinking method.
  • 5.3 Applications of carbon tubular nanofibers -- 5.3.1 Catalyst -- 5.3.2 Functionalized nanocomposites -- 5.3.3 Uranium capture -- 5.4 Our contribution -- References -- Chapter 6 Uranium adsorption property of carboxylated tubular carbon nanofibers enhanced chitosan microspheres -- 6.1 Introduction -- 6.2 Preparation and functionalization of tubular carbon nanofibers -- 6.2.1 Liquid-phase oxidation -- 6.2.2 Oxygen-plasma treatment -- 6.2.3 Photochemical grafting -- 6.2.4 Electrochemical coupling -- 6.2.5 Addition of carboxylate (coo−) containing alkyl radicals -- 6.2.6 Diels-alder (da) cycloaddition reaction -- 6.3 Chitosan enhanced COOH-TCN for uranium adsorption -- References -- Chapter 7 Oil adsorption performance of tubular hypercrosslinked polymer and carbon nanofibers -- 7.1 Introduction -- 7.2 Introduction of oil-absorbing materials -- 7.2.1 Adsorption force of oil-absorbing material -- 7.2.2 The adsorption principle of oil-absorbing materials -- 7.2.3 Classification of oil-absorbing materials -- 7.3 Research progress of one-dimensional oil-absorbing materials -- 7.3.1 One-dimensional polymer nanofibers -- 7.3.2 Carbon nanotube oil-absorbing material -- 7.3.3 Biomass-derived one-dimensional oil-absorbing materials -- 7.4 Tubular hypercrosslinked polymer -- 7.5 Length controllable hydrophobically modified tubular carbon nanofibers -- 7.6 Porous biomass tubular carbon fibers from platanus orientalis -- 7.7 Summary and outlook -- References -- Chapter 8 Fabrication of carboxylated tubular carbon nanofibers as anode electrodes for high-performance lithium^^e2^^80^^90ion batteries -- 8.1 Introduction -- 8.2 Introduction of anode materials for lithium-ion batteries -- 8.2.1 Intercalation type anode materials -- 8.2.2 Alloy-type anode materials -- 8.2.3 Conversion type anode materials -- 8.3 Research status of carbon nanotube-based anode materials.
  • 8.4 Preparation of carboxyl modified carbon nanotube anode materials -- 8.5 Fabrication of acidified tubular carbon nanofibers -- 8.5.1 Design and characterization of CMTCFs -- 8.5.2 Electrochemical performance of carboxyl-modified tubular carbon nanofibers -- 8.6 Summary and prospect -- References -- Chapter 9 Tubular carbon nanofibers loaded with different MnO2: Preparation and electrochemical performance -- 9.1 Introduction -- 9.2 Research progress of MnO2-based anode materials -- 9.2.1 MnO2-based nanostructured electrodes -- 9.2.2 MnO2-based composite electrode -- 9.3 One-dimensional carbon nanomaterials and MnO2 composite electrode materials -- 9.4 Tubular carbon nanofibers loaded with worm-like MnO2 -- 9.4.1 Characterization of CMTCFs@MnO2 -- 9.4.2 Effect of worm-like MnO2 density on the cycle performance -- 9.4.3 Enhanced rate performance of CMTCFs@MnO2 -- 9.4.4 Lithium storage mechanism of CMTCFs@MnO2 -- 9.5 Tailoring carboxyl tubular carbon nanofibers/MnO2 composites -- 9.5.1 Design and characterization of CMTCFs/MnO2 -- 9.5.2 Electrochemical performance of CMTCFs/MnO2 -- 9.6 Summary and prospect -- References -- Chapter 10 Preparation and microwave absorption properties of tubular carbon nanofibers and magnetic nanofibers -- 10.1 Introduction -- 10.2 One-dimensional carbon nanomaterials -- 10.2.1 Carbon nanotubes -- 10.2.2 Polymer-derived 1D carbon materials -- 10.2.3 Natural polymer-derived 1D carbon materials -- 10.3 Microwave absorbers and electromagnetic stealth -- 10.4 1D carbon-based microwave absorbers -- 10.4.1 1D pure carbon microwave absorbers -- 10.4.2 1D carbon/magnetic particles composite microwave absorbers -- 10.4.3 1D carbon/inorganic dielectric nano particles composite microwave absorbers -- 10.4.4 1D carbon/conductive polymer microwave absorbers -- 10.5 Tubular carbon nanofibers.
  • 10.6 Tubular magnetic carbon nanofibers with hierarchical pore structure -- 10.7 Helical/chiral biomass-derived 3D magnetic porous carbon fibers -- 10.8 Ultralight helical porous carbon fibers with CNTs-confined Ni nanoparticles -- 10.9 Summary and outlook -- References -- Chapter 11 Multiple composite tubular carbon nanofibers: Synthesis, characterization, and applications in microwave absorption -- 11.1 Introduction -- 11.2 1D multishell composite materials -- 11.2.1 Fiber-based multishell absorbers -- 11.2.2 Magnetic nanochain-based multishell absorbers -- 11.2.3 Inorganic nanowire-based multishell absorbers -- 11.3 Magnetic tubular fiber with multilayer heterostructure -- 11.4 Intertwined one-dimensional heterostructure obtained by MXene and MOF -- 11.5 Core-shell MnO2@NC@MoS2 nanowires -- 11.6 Summary and outlook -- Reference -- Chapter 12 Biomedical applications of multifunctional tubular nanofibers -- 12.1 Introduction -- 12.2 Tissue regeneration -- 12.2.1 Blood vessels -- 12.2.2 Nerves cells -- 12.2.3 Urethral epithelial cells -- 12.2.4 Cardiac tissue -- 12.2.5 Bone regeneration -- 12.3 Bio-sensing applications -- 12.4 Drug delivery applications -- 12.5 Antimicrobial applications -- 12.6 Applications in blood dialysis -- 12.7 Applications in medical devices -- 12.8 Other medical applications -- 12.9 Conclusion -- References -- Index.
  • Fabrication and Functionalization of Advanced Tubular Nanofibers and their Applications describes the synthesis, preparation and characterization of carbon-based tubular nanofibers and their applications in environmental protection and new energy sources. The book explores novel strategies for the preparation of carbon tubular nanofibers and explains how they have been used to great effect in a range of applications, including energy and healthcare. The processing-structure-property relationship in functional inorganic/organic materials is examined at the nano-level, explaining where interesting electronic, magnetic, optical, mechanical or catalytic and therapeutic properties are derived. Covering everything from the basics to their use in practice, including the synthetic procedure and characterization, this book is the perfect guide for anyone interested in the design of nanomaterials for advanced applications. Nanomaterial science is a relatively young and rapidly developing discipline that includes aspects of physics, chemistry and biology and is finding applications in some of mankind’s greatest current challenges.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 0-323-99040-1, 9780323990394
Titel-ID: 9925123367206463
Format
1 online resource (362 pages)
Schlagworte
Carbon nanofibers, Carbon nanotubes, Nanofibers, Nanotubes