Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 684

Details

Autor(en) / Beteiligte
Titel
Novel materials for environmental remediation applications : adsorption and beyond
Ort / Verlag
Amsterdam, Netherlands : Elsevier,
Erscheinungsjahr
2023
Link zum Volltext
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Intro -- Novel Materials for Environmental Remediation Applications: Adsorption and Beyond -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Broad perspective of environmental remediation technology and their recent advances through size-and shape-d -- 1. Introduction -- 2. Dimensions and shapes of metal oxides nanoparticles -- 3. Methods for the synthesis of metal oxide nanoparticles -- 3.1. Coprecipitation -- 3.2. Sol-gel method -- 3.3. Microemulsion technique -- 3.4. Solvothermal technique -- 3.5. Chemical vapor deposition -- 3.6. Pulsed laser deposition -- 4. Various shapes and sizes of nanostructured metal oxides -- 4.1. Titanium dioxide -- 4.2. Cuprous oxide -- 4.3. Cadmium oxide -- 4.4. Zinc oxide -- 5. Factors and techniques affecting the morphology of metal oxide nanostructures -- 5.1. Oriented attachment -- 5.2. Surface energy and surfactants -- 5.3. Growth regime -- 5.4. Dopants -- 5.5. Inorganic network confinement -- 6. Characterization techniques for nanoparticles -- 6.1. Transmission electron microscopy -- 6.2. Scanning electron microscopy -- 6.3. Atomic force microscopy -- 6.4. X-ray crystallography -- 6.4.1. Scattering -- 6.5. UV-vis spectroscopy -- 6.5.1. Spectrophotometer -- 7. Properties of nanostructured metal oxides -- 7.1. Mechanical property -- 7.2. Electrical property -- 7.3. Magnetic property -- 7.4. Optical property -- 7.5. Thermal property -- 8. Applications of metal oxide nanoparticles -- 8.1. Drugs and medications -- 8.2. Material manufacturing -- 8.3. Environment -- 8.4. Electronics -- 8.5. Renewable energy -- 8.6. Mechanical industries -- 9. Final remarks -- References -- Chapter 2: Advanced fungal bio-based materials for remediation of toxic metals in aquatic ecosystems -- 1. Introduction -- 2. Metallic elements in aquatic ecosystems -- 3. Filamentous fungi -- 4. Fungal biohybrids.
  • 5. Fungus/nanomaterial biohybrids as promising and efficient adsorbents -- 6. Perspectives -- References -- Chapter 3: Current trends of nano-enhanced polymeric membranes for water and wastewater reclamation -- 1. Introduction -- 2. Fundamentals of membrane separation processes -- 2.1. Features of membranes -- 2.2. Pressure-driven operations in MSP systems -- 2.3. Limitations of MSP -- 3. Current techniques applied to develop membranes loaded with nanoparticles -- 3.1. Different approaches for nano-enhanced membrane preparation -- 3.1.1. Nanoparticle addition to the polymeric solution -- 3.1.2. Immersion of membranes into nanoparticles solution -- 3.1.3. Physical deposition -- 3.2. Drawbacks on nano-enhanced membranes preparation: Leaching issues -- 4. Catalytic activity and antifouling properties of nano-enhanced membranes -- 5. Antibiofouling properties of nano-enhanced membranes -- 6. Conclusions and future perspectives -- References -- Chapter 4: Zeolites for environmental purposes -- 1. Introduction -- 2. Zeolite synthesis mechanisms -- 3. Properties of zeolites -- 3.1. Sorption and separation applications -- 3.2. Ion exchange -- 3.3. Catalytic applications -- 4. Recent advances and perspectives -- 5. Conclusion -- References -- Chapter 5: Metal-organic frameworks: The next-generation adsorbents for the sustainable remediation of aquatic po -- 1. Introduction -- 2. Structural features and properties of MOFs -- 3. Synthesis and activation of MOFs -- 3.1. Synthesis approaches -- 3.2. Activation of MOFs -- 4. Applications of MOFs for organic water pollutants removal -- 4.1. Dye -- 4.2. Phenolic -- 4.3. Pesticide -- 4.4. Pharmaceutical and personal care product -- 4.5. Miscellaneous organics -- 5. Inorganic water pollutants removal -- 5.1. Heavy metals -- 5.2. Radioactive metals and rare earth elements.
  • 5.3. Fluoride, phosphate, and miscellaneous inorganics -- 6. Synergistic enhancement effects of MOF-based composites -- 7. Comparison with the commercial adsorbents -- 7.1. Performance -- 7.2. Economic cost and environmental impact -- 8. Regeneration and reusability potential -- 9. Prospects and challenges -- 10. Conclusion -- References -- Chapter 6: MOFs as catalysts for environmental advanced oxidation processes -- 1. Introduction -- 2. Advanced oxidation process -- 2.1. Hydroxyl radicals -- 2.1.1. UV-based AOPs -- 2.1.2. Fenton-based AOPs -- 2.1.3. Ozone-based AOPs -- 2.2. Sulfate radical based AOP -- 3. Importance of MOFs in AOPs -- 4. MOF-metal oxides based composites for AOPs -- 5. MOF-metals based composites for AOPs -- 6. MOF-nonmetal-based composites for AOPs -- 7. MOF-carbon based composites for AOPs -- 8. MOFs composites with others -- 9. Summary and prospects -- References -- Chapter 7: MOFs-based advanced materials for gaseous adsorption: Sustainable environmental remediation -- 1. Introduction -- 2. Development of MOF and characterization -- 2.1. Use of dopants -- 2.2. Methodologies of high throughput gas screening -- 2.3. Characterization of MOFs -- 2.3.1. X-ray diffraction -- 2.3.2. Fourier-transform infrared spectroscopy -- 2.3.3. Scanning electron microscopy/field emission scanning electron microscope -- 2.3.4. Thermogravimetric analysis -- 3. CO2 separation by MOF -- 4. Separation of other gases (CH4, N2, and H2) by MOF -- 5. Conclusion -- References -- Chapter 8: Layered double hydroxides: An overview of structure-property correlations, synthesis methodologies, and environmen -- 1. Introduction -- 2. Fundamentals of LDHs -- 2.1. Structural aspects -- 2.2. Structure-property correlation -- 3. Overview of synthetic routes for LDHs -- 3.1. Coprecipitation method -- 3.2. Ion-exchange method -- 3.3. Hydrothermal method.
  • 3.4. Urea hydrolysis method -- 3.5. Sol-gel method -- 3.6. Reconstruction method -- 4. Characterization of LDHs -- 4.1. Structural characterization -- 4.2. Surface and compositional analysis -- 4.3. Other characterization techniques -- 5. Environmental applications of LDHs and LDH-based hybrid systems -- 5.1. Removal of organic pollutants -- 5.2. Removal of inorganic heavy metals -- 5.3. Production of clean energy -- 5.4. CO2 reduction to energy-rich fuels -- 6. Conclusions and future perspectives -- References -- Chapter 9: Fundamentals and applications of layered double hydroxides for fluoride removal -- 1. Introduction -- 2. Preparation of LDH and modifications -- 2.1. Different synthesis methods of LDHs -- 2.1.1. Coprecipitation -- 2.1.2. Ion exchange -- 2.1.3. Urea hydrolysis -- 2.1.4. Reconstruction/rehydration -- 2.1.5. Hydrothermal process -- 2.2. Modification methods -- 3. Physicochemical characteristics of LDH -- 4. Removal of fluoride by different LDH-based adsorbents -- 4.1. Mg/Al LDH-based adsorbents -- 4.2. Mg/Fe LDH-based adsorbents -- 4.3. Other LDH-based adsorbents -- 5. Factors affecting fluoride removal -- 5.1. Operating conditions -- 5.2. Synthesizing conditions -- 5.3. Environmental conditions -- 6. Challenges and future perspectives -- Acknowledgments -- References -- Chapter 10: Novel low-cost bentonite-based membranes for microfiltration, ultrafiltration, and nanofiltration appl -- 1. Introduction -- 2. Natural bentonite characterization -- 3. Preparation of bentonite MF membranes -- 3.1. Bentonite-based flat membranes -- 3.2. Enhancement of bentonite microfiltration membranes -- 3.3. Water treatment applications -- 3.4. Fouling phenomena -- 4. Preparation of ultrafiltration and nanofiltration bentonite-based membranes -- 4.1. Titania -- 4.2. Zirconia -- 4.3. Purified clays -- 5. Conclusion and future trends -- References.
  • Chapter 11: From conventional to advanced materials for arsenic removal from groundwaters -- 1. Introduction -- 2. Conventional solid phase materials for arsenic removal from groundwater -- 2.1. Iron oxide-based materials -- 2.1.1. Granular ferric hydroxide -- 2.1.2. Granular ferric oxide -- 2.2. Zero-valent iron -- 2.3. Biochar -- 2.4. Granular TiO2 -- 2.5. Laterite -- 2.6. Activated alumina -- 2.7. Fe-Mn binary oxide materials -- 3. Novel nanostructured materials for arsenic removal from groundwater -- 3.1. Modified combined materials -- 3.2. Graphene-based modified adsorbents -- 3.3. Activated carbon modified adsorbents -- 4. Conclusions -- References -- Chapter 12: The use of graphene nanocomposites in the remediation of contaminated soils: Synergies, effectiveness, and li ... -- 1. Introduction -- 2. Main sources of soil contamination -- 2.1. Men activities in general -- 2.2. Hydrocarbon, PAHs and other POPs contamination -- 2.3. Soil contamination by metallic ions and heavy metals -- 3. Synthesis and properties of multifunctional graphene-derived nanocomposites (GDNs) -- 3.1. Pristine graphene and graphene oxide (GO) -- 3.2. Metal oxide-graphene frameworks -- 3.3. The role of covalent functionalization in the enhancement of remediation efficiency -- 4. How GDNs are currently applied to the treatment of soils? -- 5. Environmental risks and liabilities regarding the use of GDNs -- 6. Recent advances and future perspectives -- 7. Conclusions and remarks -- References -- Chapter 13: Green extraction approaches utilizing graphene and graphene oxide derivatives in environmental analysis -- 1. Introduction -- 2. Green extraction of metals in environmental analysis -- 3. Green extraction of organic compounds in environmental analysis -- 3.1. Applications of magnetic graphene and graphene oxide derivatives.
  • 3.2. Applications of nonmagnetic graphene and graphene oxide derivatives.
  • Novel Materials for Environmental Remediation Applications: Adsorption and Beyond presents detailed, comprehensive coverage of novel and advanced materials that can be applied to address the growing global concern of the pollution of natural resources in water, the air, and in soil. The book provides up-to-date knowledge of state-of-the-art materials and treatment processes, as well as details of applications, including adsorptive remediation and catalytic remediation. Chapters include the characteristics of materials, basic and important physicochemical features for environmental remediation applications, routes of synthesis, recent advances as remediation medias and future perspectives. This book offers an interdisciplinary and practical examination of novel materials and processes for environmental remediation that will be valuable to environmental scientists, materials scientists, environmental chemists, and environmental engineers alike.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 0-323-91927-8, 9780323918947
Titel-ID: 9925088659306463
Format
1 online resource (606 pages)
Schlagworte
Hazardous waste site remediation, Adsorption