Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 3 von 92

Details

Autor(en) / Beteiligte
Titel
Design and manufacture of structural composites
Ort / Verlag
Cambridge, Massachusetts : Woodhead Publishing,
Erscheinungsjahr
[2023]
Link zum Volltext
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Intro -- Design and Manufacture of Structural Composites -- Copyright -- Dedication -- Contents -- Contributors -- Preface -- Section A: Introduction to composite materials -- Chapter 1: Introduction -- 1.1. What is a composite? -- 1.2. Composites manufacturing -- 1.3. Where is the industry heading? -- 1.3.1. Automation -- 1.3.2. Sustainability -- 1.3.3. Challenges -- 1.3.3.1. Aerospace -- 1.3.3.2. Renewable energy -- 1.3.3.3. Energy storage -- 1.3.3.4. Automotive -- 1.4. Summary -- References -- Chapter 2: Reinforcing fibres -- 2.1. Introduction -- 2.2. Types of fibre reinforcement -- 2.2.1. Inorganic fibres -- 2.2.1.1. Glass fibre -- 2.2.1.2. Basalt fibre -- 2.2.1.3. Ceramic fibres -- 2.2.2. Organic fibres -- 2.2.2.1. Carbon (graphitic) fibre -- 2.2.2.2. Aramid fibre -- 2.2.2.3. Natural (cellulosic) fibres -- 2.2.2.4. Other polymer fibres -- 2.3. Fibre coatings -- 2.4. Fibre forms, nomenclature, properties, and testing -- 2.4.1. Finished fibre forms -- 2.4.2. Textile materials -- 2.4.3. Discontinuous fabrics -- 2.4.4. Properties and testing -- 2.5. Sustainability, recycling, and reuse -- 2.6. Summary -- References -- Chapter 3: Resins for structural composites -- 3.1. Introduction -- 3.2. Thermosetting resins -- 3.2.1. Epoxy -- 3.2.1.1. Epoxy chemical structures -- 3.2.1.2. Epoxy cure mechanism -- 3.2.1.3. Epoxy curing agent selection -- 3.2.1.4. Epoxy resin selection -- 3.2.1.5. Bio-derived epoxies -- 3.2.1.6. Recyclable epoxies -- 3.2.1.7. Powder epoxy -- 3.2.2. Unsaturated polyester -- 3.2.3. Vinyl ester -- 3.2.4. Benzoxazine -- 3.2.5. Bismaleimide -- 3.2.6. Toughened thermosets -- 3.3. Thermoplastic resin systems -- 3.3.1. PEEK and PEKK -- 3.3.1.1. Chemical structure -- 3.3.1.2. Crystallisation and morphology -- 3.3.2. Anionic polyamide 6 (APA6) -- 3.3.3. Liquid acrylic resins -- 3.4. Resin characterisation -- 3.4.1. Rheometry.
  • 3.4.2. Differential scanning calorimetry -- 3.4.3. Dynamic mechanical analysis -- 3.5. Property comparison of resins -- 3.6. Summary -- Acknowledgements -- References -- Chapter 4: Intermediate composite materials -- 4.1. Introduction -- 4.2. Dry intermediate materials -- 4.2.1. Dry fibre architectures -- 4.2.2. Tow handling and spreading -- 4.2.3. Continuous fibre architectures -- 4.2.3.1. Woven textiles -- 4.2.3.2. Non-crimp fabrics -- 4.2.3.3. 3D fabrics -- 4.2.4. Discontinuous fibres architectures -- 4.2.4.1. Unifilo/chopped strand mat -- 4.3. Thermoset matrix composite intermediates -- 4.3.1. Preimpregnated reinforcements -- 4.3.2. Thermoset prepreg manufacturing process -- 4.3.3. Thermoset moulding compound manufacturing process -- 4.3.4. Recent developments in thermoset prepregs -- 4.4. Thermoplastic matrix composite intermediates -- 4.4.1. Thermoplastic matrix classes and final applications -- 4.4.2. Tape thermoplastic matrix intermediates -- 4.4.3. Comingled fibre thermoplastic matrix intermediates -- 4.4.4. Powder thermoplastic matrix intermediates -- 4.5. Cores -- References -- Section B: Material preforming and conversion -- Chapter 5: Two-dimensional to three-dimensional dry fibre preforming -- 5.1. Introduction -- 5.2. Fabric materials for preforming -- 5.2.1. Choice of commercial fabrics -- 5.2.2. Formability mechanisms -- 5.2.2.1. In-plane shear -- 5.2.2.2. In-plane tension -- 5.2.2.3. Out-of-plane bending -- 5.2.2.4. Material sliding -- 5.3. Fabric forming techniques -- 5.3.1. Press tool forming -- 5.3.2. Diaphragm forming -- 5.3.2.1. Single vs double diaphragm forming -- 5.3.3. Forming-induced defects -- 5.3.3.1. Press tool forming defects -- 5.3.3.2. Diaphragm forming defects -- 5.4. Scenarios for defect mitigation -- 5.5. Summary -- References -- Chapter 6: Automated fibre placement -- 6.1. Introduction.
  • 6.1.1. History and development of the automated tape laying and automated fibre placement processes -- 6.1.2. Current status of processes -- 6.1.3. Basic principles of operation, gantry versus robot designs -- 6.1.4. Thermoset matrix processing -- 6.1.5. Thermoplastic matrix processing -- 6.2. Current challenges -- 6.2.1. Productivity issues -- 6.2.2. Accuracy and control issues -- 6.2.3. Temperature control and heating strategies -- 6.2.4. Lay-up head design and operational issues -- 6.2.5. Impacts on cured ply thickness and as-laid quality -- 6.2.6. Monitoring and control -- 6.3. Next-generation AFP/ATL -- 6.3.1. Advantages and limitations of AFP and ATL -- 6.3.2. Steering effects and tack -- 6.3.3. Dry fibre AFP issues -- 6.3.4. Tailored blanks and post-forming -- 6.4. Development areas and future research -- References -- Chapter 7: Braiding and filament winding -- 7.1. Introduction -- 7.2. Braiding -- 7.2.1. 2D braiding -- 7.2.2. 3D braiding -- 7.2.3. Braid parameters -- 7.2.3.1. Braid angle -- 7.2.3.2. Cover factor -- 7.2.3.3. Interlacement pattern -- 7.2.3.4. Nesting factor -- 7.2.3.5. Fibre tension -- 7.2.4. Braid design tools -- 7.2.5. Braid manufacturing challenges -- 7.3. Filament winding -- 7.3.1. Conventional filament winding -- 7.3.2. Multifilament winding -- 7.3.2.1. Multi-supply filament winding (MFW) -- 7.3.2.2. 3D filament winding (3DFW) -- 7.3.2.3. Multifilament winding with through-thickness reinforcement -- 7.3.3. Toroidal winding -- 7.3.4. Filament winding challenges -- 7.4. Hybrid braid-winding -- 7.5. Structural performance of braided and filament-wound composites -- 7.5.1. Braiding -- 7.5.2. Filament winding -- 7.5.3. Braid-winding -- 7.6. Summary -- References -- Chapter 8: Three-dimensional woven composites -- 8.1. Introduction -- 8.2. Definition, classification, and motivation of 3D woven preforms -- 8.2.1. Definition.
  • 8.2.2. Classification of 3D woven preforms -- 8.2.3. Motivation for 3D woven preforms -- 8.3. Manufacturing of 3D woven preforms -- 8.4. Influence of microstructural parameters on defects in 3D woven composites -- 8.5. Performance and failure mechanisms of 3D woven composites -- 8.5.1. Tensile performance -- 8.5.2. Compressive performance -- 8.5.3. Impact performance -- 8.6. Machine developments for 3D woven composites -- 8.7. Summary -- References -- Section C: Moulding -- Chapter 9: Autoclave and out-of-autoclave processing of prepregs -- 9.1. Introduction -- 9.2. Prepreg processing -- 9.2.1. Consumables -- 9.3. Curing equipment and tooling -- 9.4. Prepreg materials -- 9.4.1. Prepreg fibre bed properties -- 9.4.1.1. Fibre bed compaction -- 9.4.1.2. Fibre bed permeability -- 9.4.1.3. Air permeability -- 9.4.1.4. Prepreg bulk factor -- 9.4.1.5. Prepreg degree of impregnation -- 9.4.2. Prepreg resin properties -- 9.4.2.1. Prepreg cure kinetics -- 9.4.2.2. Prepreg rheological behaviour -- 9.4.2.3. Volumetric changes -- 9.4.2.4. Resin elastic modulus -- 9.5. Process design -- 9.5.1. Air evacuation -- 9.5.2. Cure cycle selection -- 9.6. Challenges -- 9.6.1. Sandwich panels -- 9.6.2. Complex shaped parts -- 9.7. Summary -- References -- Chapter 10: Liquid composite moulding -- 10.1. Introduction -- 10.2. Theory -- 10.2.1. Process cycle -- 10.2.2. Resin flow -- 10.2.3. Resin cure -- 10.2.4. Heat transfer -- 10.2.5. Inter-dependencies -- 10.2.6. Solution for the resin flow problem -- 10.3. Processing properties of reinforcement -- 10.3.1. Reinforcement types -- 10.3.2. Permeability -- 10.3.2.1. Basics of permeability -- 10.3.2.2. General comments on permeability -- 10.3.2.3. Practical problems -- 10.3.3. Compaction response -- 10.4. Processing properties of matrix -- 10.4.1. Thermoset matrix -- 10.4.2. Thermoplastic matrix -- 10.5. Implementation.
  • 10.5.1. Practical considerations -- 10.5.2. Process variants -- 10.5.2.1. Resin transfer moulding -- 10.5.2.2. High-pressure resin transfer moulding -- 10.5.2.3. Vacuum infusion -- 10.5.2.4. Light RTM -- 10.5.2.5. Compression RTM -- 10.5.3. Sandwich structures -- 10.6. Summary -- References -- Chapter 11: Compression moulding -- 11.1. Introduction -- 11.2. Overview of compression moulded composite materials and their associated processing routes -- 11.2.1. Sheet moulding compounds (SMCs) -- 11.2.1.1. Constituents -- 11.2.1.2. Fabrication of SMCs -- 11.2.1.3. SMC compression moulding process -- 11.2.2. Glass mat thermoplastics (GMTs) -- 11.2.2.1. Constituents -- 11.2.2.2. Fabrication of GMTs -- 11.2.2.3. GMT compression moulding process -- 11.2.3. Long fibre thermoplastics (LFTs) -- 11.2.4. Platelet and scrap materials -- 11.3. Compression moulding challenges -- 11.3.1. Consolidation and flow phenomena during compression moulding -- 11.3.2. Flow-induced fibre microstructures -- 11.3.3. Flow-induced pore evolution during compression moulding -- 11.4. Current trends and outlook -- References -- Chapter 12: Thermoplastic stamp forming -- 12.1. Thermoplastic forming processes and process windows -- 12.2. Materials and deformation mechanisms -- 12.3. Material characterisation -- 12.4. Process modelling and sensitivity analysis -- 12.5. Forming-induced defects -- 12.6. Design for manufacturing -- 12.7. Current industrial practice -- Acknowledgments -- References -- Chapter 13: Composite injection overmoulding -- 13.1. Injection moulding process -- 13.2. Composite injection overmoulding-Background -- 13.3. Composite injection overmoulding process -- 13.3.1. Single-stage injection overmoulding -- 13.3.2. Two-stage composite injection overmoulding -- 13.4. Material characteristics -- 13.4.1. Material compatibility.
  • 13.5. Interface formation in injection overmoulding.
  • Design and Manufacture of Structural Composites provides an overview of the main manufacturing challenges encountered when processing fibre-reinforced composite materials. Composites are unique in that the material is created at the same time as the structure, forming a very close link between the constituents, the manufacturing process and the resulting mechanical performance. This book takes an in-depth look at material choices and the intermediate steps required to convert different fibre and matrix combinations into finished products. It provides an insight into recent developments for each of the manufacturing processes covered, addressing design, cost, rate and mechanical performance. Topics covered include an introduction to composite materials, material preforming and conversion, moulding, digital design and sustainability, which addresses waste reduction, disassembly and fibre recovery. This book has been developed primarily as a teaching resource with contributions from leading experts in the field. The content has evolved from courses given by the authors to mechanical engineering and materials science students, at both undergraduate and postgraduate levels. It also draws upon experience gained during research projects and from leading industry experts. It therefore provides non-specialists with a valuable introduction to composite manufacturing techniques, helping to determine the most suitable manufacturing routes and to understand the challenges associated with the production of high-performance composite components.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 0-12-819161-9
Titel-ID: 9925088638706463
Format
1 online resource (586 pages)
Schlagworte
Fibrous composites, Manufacturing processes