Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 7

Details

Autor(en) / Beteiligte
Titel
Advances and developments in biobutanol production
Ist Teil von
  • Applied biotechnology reviews
Ort / Verlag
Cambridge, Massachusetts : Woodhead Publishing is an imprint of Elsevier,
Erscheinungsjahr
[2023]
Link zum Volltext
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Front Cover -- ADVANCES ANDDEVELOPMENTS INBIOBUTANOLPRODUCTION -- ADVANCES ANDDEVELOPMENTS INBIOBUTANOLPRODUCTION -- Copyright -- Contents -- Contributors -- Preface -- 1 - Bio-butanol production: scope, significance, and applications -- 1.1 Introduction -- 1.2 History of butanol production -- 1.3 Microbial species and strains commonly used for butanol fermentation -- 1.3.1 Native butanol producing microorganisms -- 1.3.2 Metabolically modified native butanol-producing microorganisms -- 1.3.3 Metabolically modified nonnative butanol-producing microorganisms -- 1.4 Butanol production feedstock -- 1.4.1 First-generation feedstock -- 1.4.2 Second-generation feedstock -- 1.4.2.1 Pretreatment methods -- 1.4.3 Third-generation feedstock -- 1.4.3.1 Microalgae biomass -- 1.4.3.2 Syngas -- 1.5 Butanol fermentation -- 1.5.1 Batch fermentation processes -- 1.5.2 Continuous fermentation processes -- 1.5.2.1 Free cell continuous fermentation process -- 1.5.2.2 Immobilized cell continuous fermentation process -- 1.5.3 Technology innovations to advance butanol fermentation -- 1.5.3.1 Pervaporation -- 1.5.3.2 Gas stripping -- 1.5.3.3 Liquid-liquid extraction -- 1.5.3.4 Perstraction -- 1.6 Significance and applications of butanol and butanol derivatives -- 1.7 Conclusion -- References -- 2 - Developments in biobutanol industrial production -- 2.1 Introduction -- 2.2 Problem statement and case study -- 2.2.1 Purification alternatives -- 2.2.1.1 Pervaporation-distillation -- 2.2.1.2 Azeotropic distillation -- 2.2.1.3 Pressure-swing distillation -- 2.3 Analysis methodology in a sustainability framework -- 2.3.1 Economic analysis -- 2.3.2 Environmental impact -- 2.3.3 Inherent safety analysis -- 2.3.4 Control properties analysis -- 2.4 Objective function and optimization strategy -- 2.5 Results -- 2.5.1 Implementation and practical considerations -- 2.6 Conclusions.
  • References -- 3 - Biobutanol fermentation research and development: feedstock, process and biofuel production -- 3.1 Introduction -- 3.2 Historical significance of biobutanol -- 3.3 Feedstocks -- 3.3.1 Cheese whey -- 3.3.2 High sugar content beverages -- 3.3.3 Dedicated lignocellulosic biomass -- 3.3.4 Agricultural residues -- 3.3.5 Food wastes and food losses -- 3.3.6 Microalgae feedstocks for biobutanol production -- 3.3.7 Municipal solid waste feedstock for biobutanol production -- 3.4 Process integration and intensification -- 3.5 Properties of bio-butanol for use as fuels -- 3.6 Fermentation technologies -- 3.7 Biobutanol microorganisms -- 3.8 Optimization strategies and modeling -- 3.9 Upstream processing of biobutanol -- 3.10 Downstream processing of biobutanol -- 3.11 Conclusion and future perspectives -- References -- Further reading -- 4 - Novel approaches toward bio-butanol production from renewable feedstocks -- 4.1 Introduction -- 4.2 Second generation biofuels: lignocellulosic substrates -- 4.3 Recombinant microorganisms and biosynthetic pathways -- 4.4 Fermentations in stages and using consortiums -- 4.5 In situ product recovery (ISPR) and ex-situ product recovery (ExSPR) -- 4.5.1 Vacuum evaporation -- 4.5.2 Gas stripping -- 4.5.3 Liquid-liquid equilibrium (LLE) -- 4.5.4 Membrane extraction -- 4.5.5 Adsorption -- 4.5.6 Pervaporation -- 4.5.7 Product recovery -- 4.5.8 Recovery and purification of ABE -- 4.5.9 Recovery and purification of IBE -- 4.5.10 Heat-integrated distillation -- 4.6 Mathematical models and process design methods -- 4.6.1 Evolution of ABE fermentation models-kinetics -- 4.6.2 Energy intensity of an integrated recovery and fermentation system -- 4.6.3 The heat of evaporation of a recovery system -- 4.6.4 Sensible heating of an ISPR and ExSPR (adsorption and LLE) -- 4.6.5 Heating and recycling in ExSPR.
  • 4.6.6 Energy requirements of distillation -- 4.6.7 Effect of operating conditions on the energy requirements -- 4.6.7.1 Sensible heat with recycling -- 4.6.7.2 Adsorption and LLE -- 4.7 Concluding remarks -- References -- 5 - Biobutanol from agricultural residues: Technology and economics -- 5.1 Introduction -- 5.2 Overview of substrates/feedstock sources -- 5.2.1 Biomass and other sources -- 5.2.2 Composition of different feedstocks and their valorization -- 5.3 Biobutanol production technologies -- 5.4 Technological challenges in biobutanol production -- 5.4.1 Feedstocks challenges -- 5.4.2 Pretreatment and hydrolysis obstacles -- 5.4.3 Fermentation and downstream processing challenges -- 5.4.4 Sustainability evaluation -- 5.5 Approaches to overcome the technological barriers -- 5.5.1 Potential remedies for feedstock challenges -- 5.5.2 Way out to tackle pretreatment and hydrolysis challenges -- 5.5.3 Remedies to fermentation challenges -- 5.5.4 Potential remedies to downstream processing obstacles -- 5.6 Current economics of biobutanol production -- 5.7 Future outlooks and conclusions -- 5.7.1 Future outlooks -- 5.7.2 Conclusions -- References -- 6 - Biobutanol from agricultural and municipal solid wastes, techno-economic, and lifecycle analysis -- 6.1 Introduction -- 6.2 Biobutanol as an advanced biofuel -- 6.3 Biobutanol production and technologies -- 6.4 Biobutanol: new era of biofuels -- 6.5 ABE fermentation technology -- 6.6 Biobutanol feedstocks -- 6.6.1 Agricultural and other lignocellulosic biomasses -- 6.6.2 Municipal solid wastes -- 6.6.3 Substrates development for biobutanol -- 6.6.4 Butanol recovery techniques -- 6.7 Biofuel production -- 6.7.1 Bioethanol case studies -- 6.7.2 The economy of biobutanol production -- 6.8 Techno-economic assessment -- 6.9 Lifecycle analysis -- 6.10 Conclusion and future perspectives -- References.
  • 7 - The importance and impact of pretreatment on bio-butanol production -- 7.1 Introduction -- 7.2 Different types of pretreatment -- 7.2.1 Mechanical pretreatment -- 7.2.1.1 Mechanical comminution -- 7.2.1.2 Extrusion -- 7.2.1.3 Microwave treatment -- 7.2.1.4 Ultrasound treatment -- 7.2.2 Hydrothermal pretreatment -- 7.2.3 Chemical pretreatment -- 7.2.3.1 Weak acid hydrolysis -- 7.2.3.2 Strong acid hydrolysis -- 7.2.3.3 Alkaline hydrolysis -- 7.2.3.4 Organosolv -- 7.2.3.5 Oxidative delignification -- 7.2.3.6 Room temperature ionic liquids -- 7.2.3.7 Deep eutectic solvents -- 7.2.4 Biological pretreatment -- 7.2.4.1 Lignocellulolytic enzymes -- 7.2.4.2 Clostridia as producers of enzymes -- 7.2.4.3 Enzymatic action with fermentation strategies -- 7.3 Inhibitors in biobutanol production -- 7.3.1 Effect of inhibitors on microbial bio-butanol production -- 7.3.2 Detoxification strategies -- 7.4 Impact of pretreatment strategies in biobutanol production -- 7.5 Concluding remarks -- References -- 8 - Biobutanol production from food crops -- 8.1 Introduction -- 8.2 Fermentation process of butanol production -- 8.3 Ancient industrial process of biobutanol production -- 8.4 Food crops used for butanol production -- 8.5 Present status of biofuel (biobutanol) production from food grains -- 8.6 Future perspective of butanol production from food crops -- 8.7 Conclusions -- Acknowledgments -- References -- 9 - Lignocellulosic bio-butanol production: challenges and solution -- 9.1 Introduction -- 9.2 Conventional acetone-butanol-ethanol fermentation -- 9.2.1 Alternate noncellulosic substrates -- 9.3 Lignocellulosic biomass as a substrate in ABE fermentation for butanol production -- 9.4 Challenges associated with lignocellulosic biomass as substrate for butanol production.
  • 9.5 Solution to the existing challenges associated with lignocellulosic biomass as substrate for butanol production -- 9.6 Cost analysis of lignocellulosic butanol production -- 9.7 Conclusions -- References -- Further reading -- 10 - Methods for bio-butanol production and purification -- 10.1 Introduction -- 10.2 Generations of bio-butanol production -- 10.3 Fermentation techniques for bio-butanol production -- 10.4 Challenges in bio-butanol production -- 10.5 Strain development for bio-butanol production -- 10.6 Recovery processes for butanol purification -- 10.6.1 Adsorption -- 10.6.2 Liquid-liquid extraction -- 10.6.3 Pervaporation -- 10.6.4 Gas stripping -- 10.6.5 Perstraction -- 10.6.6 Reverse osmosis (RO) -- 10.7 Conclusion and future prospects -- Acknowledgment -- References -- 11 - Current status and perspective on algal biomass-based biobutanol production -- 11.1 Introduction -- 11.2 Biobutanol-a promising alternate fuel -- 11.3 Feedstock for biobutanol production -- 11.3.1 First generation feedstock -- 11.3.2 Second generation feedstock -- 11.4 Algae-a third-generation feedstock for biobutanol production -- 11.4.1 Microalgae -- 11.4.2 Macroalgae -- 11.5 Biobutanol production process -- 11.5.1 Pretreatment of algal biomass -- 11.5.1.1 Physical and mechanical methods -- 11.5.1.2 Acid treatment -- 11.5.1.3 Alkali treatment -- 11.5.1.4 Enzymatic pretreatment -- 11.5.1.5 Other pretreatments -- 11.5.1.6 Nanoparticles in pretreatment -- 11.6 Biobutanol fermentation processes -- 11.6.1 Batch fermentation -- 11.6.2 Immobilized bacterial cells in fermentation -- 11.7 Downstream processing of biobutanol -- 11.7.1 Liquid-liquid extraction -- 11.7.2 Pervaporation -- 11.7.3 Gas stripping -- 11.7.4 Super critical extraction -- 11.8 Challenges in algal biomass-based ABE fermentation -- 11.9 Conclusion -- References.
  • 12 - Insights into metabolic engineering approaches for enhanced biobutanol production.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 0-323-99805-4
Titel-ID: 9925078967706463
Format
1 online resource (406 pages)
Schlagworte
Biomass energy. , Butanol