Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 194

Details

Autor(en) / Beteiligte
Titel
Glial-neuronal signaling in neuroendocrine systems
Ort / Verlag
Cham, Switzerland : Springer,
Erscheinungsjahr
[2021]
Link zum Volltext
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Intro -- Series Preface -- Volume Preface -- Contents -- Part I: Glial-Neuronal Interactions in the Control of Hypothalamic Development -- 1: The Role of Microglia in the Developing Hypothalamus -- 1.1 Introduction -- 1.1.1 Hypothalamic Organization and Function in the Neuroendocrine System -- 1.1.2 Microglia Invasion During Hypothalamic Development -- 1.1.3 Hypothalamic Gliogenesis -- 1.2 Unraveling Hematopoiesis and the Unique Origins of Microglia -- 1.2.1 Hematopoiesis -- 1.2.2 Microglial Origins -- 1.2.3 Border-Associated Macrophages -- 1.3 Local Environmental Signals Shape Microglia Development and Influence Microglial Heterogeneity -- 1.3.1 Microglial Heterogeneity -- Box 1.1: Single-Cell RNA Sequencing -- 1.4 Microglial Functions During Hypothalamic Development -- 1.4.1 Importance of Embryonic Microglia for the Proper Development of Hypothalamic Circuitry -- Box 1.2: Using CSF1R Inhibitors to Deplete Microglia in the CNS -- Box 1.3: Hypothalamic Circuitry Involved in Feeding and Energy Balance -- 1.5 Microglia Are Sexually Dimorphic and Contribute to Sexual Dimorphism Within the Hypothalamus -- 1.5.1 A Role for Microglia in the Establishment of Sexually Dimorphic Brain Regions -- 1.6 Embryonic Microglia Act as Sensors During Development -- 1.7 Perspectives -- 1.8 Key Literature -- References -- Part II: Glial-Neuronal Interactions in the Control of the Magnocellular Neuroendocrine System -- 2: Functional Consequences of Morphological Plasticity in the Adult Hypothalamo-Neurohypophysial System -- 2.1 Introduction: Structural Glial Plasticity in the Adult HNS -- 2.1.1 Anatomy of the HNS System -- 2.1.2 Functions of Oxytocin and Vasopressin -- 2.1.3 Electrophysiology of Oxytocin and Vasopressin Neurons -- 2.1.4 Glial Cells of the HNS -- 2.1.5 Structural Glial Plasticity in the Adult HNS.
  • 2.1.6 Investigating the Functional Consequences of Structural Plasticity -- 2.2 Contribution of the Astrocytic Environment to Homosynaptic Strength -- Box 2.1: Investigating the Presynaptic Origin of Drug Action Using Paired-Pulse Facilitation -- 2.2.1 Role of Glutamate Uptake on Homosynaptic Efficacy -- 2.2.2 Control of Homosynaptic Efficacy Through Metabotropic Glutamate Receptors -- 2.2.3 Glial Coverage Controls Homosynaptic Efficacy -- 2.2.4 Glial Coverage Controls Concentration and/or Time Course in the Synaptic Cleft -- 2.2.5 Physiological Consequences -- 2.3 Contribution of the Astrocytic Environment to Inter-synaptic Crosstalk -- 2.3.1 Glial Coverage Controls Diffusion in the Extracellular Space -- 2.3.2 Changes in Diffusion Facilitate Heterosynaptic Activity Through Metabotropic Glutamate Receptors -- 2.3.3 Limiting Changes in Diffusion Affect Glutamate Spillover -- 2.3.4 Functional Presynaptic Kainate Receptors on GABAergic Terminals in the HNS -- 2.3.5 Changes in Glial Coverage Switches Kainate Receptor Presynaptic Action -- 2.3.6 Mechanisms for Facilitation and Inhibition by KARs -- 2.3.7 Physiological Consequences -- 2.4 Gliotransmission in the HNS: A Case for d-Serine -- Box 2.2: Is Gliotransmission a Physiological Phenomenon? -- Box 2.3: Is d-Serine a Gliotransmitter? -- 2.4.1 d-serine Is Synthesized and Expressed by Astrocytes in the Supraoptic Nucleus -- 2.4.2 d-Serine Is the Endogenous Co-agonist of NMDA Receptors in the Supraoptic Nucleus -- 2.4.3 Astrocytes Regulate d-Serine Concentration in the Synaptic Cleft -- 2.4.4 Astrocytes Control Long-Term Synaptic Plasticity -- 2.4.5 Physiological Consequences -- 2.5 Perspectives -- 2.6 Key Literature -- References -- Further Recommended Reading -- 3: Fenestrated Capillary and Dynamic Neuro-Glial-Vascular Reorganization of the Adult Neurohypophysis -- 3.1 Introduction.
  • 3.2 Cellular Components of the Neurohypophysis -- 3.2.1 Axonal Terminals -- 3.2.2 Pituicytes -- 3.2.3 Oligodendrocyte Progenitor Cells -- Box 3.1. Oligodendrocyte Progenitor Cells -- 3.2.4 Microglia -- 3.3 Fundamental Characteristics of Neurohypophysial Capillaries -- 3.3.1 Wide Perivascular Space and Thick Basement Membrane -- 3.3.2 Lack of Endothelial Blood-Brain Barrier -- Box 3.2. Blood-Brain Barrier -- Box 3.3. Circumventricular Organs -- 3.3.3 Size-Limited Vascular Permeability -- 3.3.4 Dynamics of Capillary Density by Angiogenesis -- Box 3.4. Angiogenesis -- 3.4 Activity-Dependent Structural Reorganization -- 3.4.1 Activity-Dependent Increase in Neuro-vascular Contacts -- 3.4.2 Dynamic Alteration of Neuro-vascular Contacts by Shape Conversion of Pituicytes and Pericytes -- 3.4.3 Activity-Dependent Change in Glial Proliferation -- 3.5 Perspectives -- 3.6 Key Literature -- References -- 4: Astrocyte-Magnocellular Neuron Interactions in Hypothalamic Memory -- 4.1 Introduction -- 4.1.1 Magnocellular Neuroendocrine Cells (MNCs) -- 4.1.2 Vasopressin -- 4.1.3 Oxytocin -- 4.2 Noradrenaline in MNC Output -- 4.2.1 Noradrenaline and ATP -- 4.3 Glial-Neuronal Interactions in the MNC Nuclei -- 4.4 ATP Release from Astrocytes -- 4.5 Structural Remodelling Reveals Astrocyte MNC Interactions -- Box 4.1 -- 4.6 ATP Versus Adenosine -- 4.7 Conclusion and Future Perspectives -- 4.8 Key Literature -- References -- Further Recommended Reading -- 5: The Multifaceted Roles of Hypothalamic Astrocytes and Microglial Cells in Neuroendocrine and Autonomic Regulation in Health... -- 5.1 Introduction: Neuron-Glia Interactions in the Brain -- 5.1.1 Astrocytic Diversity -- 5.1.2 Astrocytes as Regulators Between Pre- and Post-synapse -- 5.2 Transfer of Power in the Glial Kingdom: Microglial Cells.
  • 5.2.1 Origin of Microglia: A Journey from the Yolk Sac to the Developing Brain -- 5.2.2 Role of Microglia in the Developing Brain: Neuronal Support and Synaptic Pruning -- 5.2.3 Microglia in the Adult Brain: Homeostasis and Immune Response -- Box 5.1: Overview of Astrocyte and Microglia Functions in the Developing, Mature, and Diseased Brain -- 5.3 The Supraoptic and Paraventricular Nuclei of the Hypothalamus: Role in Homeostasis and Emotional Regulation -- 5.3.1 Somato-dendritic Release of Oxytocin and Vasopressin -- 5.3.2 Role of Neuro-glial Interaction in Regulating the Physiological Activity in the SON and PVN -- 5.3.3 Neuroinflammation in the SON and PVN in Disease Conditions -- 5.3.4 Role of the Renin-Angiotensin System (RAS) in Mediating Reactive Astrocytes and Microglia Cell Activation in the SON and... -- 5.3.5 Compromised PVN Blood-Brain Barrier Integrity as Part of the Neuroinflammatory Response During Hypertension -- 5.4 Experimental Approach to Monitor Microglia Activation During the Neuroinflammatory Response -- 5.5 Perspectives -- 5.6 Key Literature -- References -- Part III: Glial-Neuronal Interactions in the Control of Metabolic Function -- 6: Control of Systemic Metabolism by Astrocytes in the Brain -- 6.1 Introduction -- 6.1.1 A Brief History of Astrocytes -- 6.2 Biology and Physiology of Astrocytes: Characteristics and Function -- 6.2.1 Astrocytes Are Critical for Energetics of the CNS -- 6.2.2 Astrocyte Networks and Diversity: Morphological and Molecular Hallmarks -- 6.2.3 Astrocytic Ca2+ Signaling: The Trademark of Astrocyte Communication -- 6.2.4 Astrocytes: Secretory Cells Within the CNS -- Box 6.1: Astrocytes Release Gliotransmitters via Ca2+-Regulated Exocytosis -- 6.2.5 Astrocytes Regulate Synaptic Plasticity and Transmission -- 6.2.6 Astrocytes as Integral Components of the Neuro-Glio-Vascular Unit.
  • 6.2.7 Astrocytes in the Brain Control of Systemic Metabolism -- Box 6.2: Central Regulation of Glucose Homeostasis -- Box 6.3: Astrocyte-Neuron Interactions in the Arcuate Nucleus of the Hypothalamus -- 6.3 Astrocytes in Pathological Conditions -- 6.3.1 Reactive Astrocytes in Obesity -- 6.4 Perspectives -- 6.5 Key Literature -- References -- 7: Glia-Neuron Communication: Not a One-Way Street -- 7.1 Introduction -- 7.2 The Arcuate Nucleus of the Hypothalamus Regulates Energy Homeostasis -- 7.2.1 The Hypothalamus Is the Master Regulator of Homeostasis -- 7.2.2 Nuclei of the Hypothalamus -- Box 7.1: The Hypothalamus Is Home to a Diverse Array of Distinct, Specialized Nuclei That Play Critical Roles in Homeostatic a... -- 7.2.3 The Arcuate Nucleus of the Hypothalamus Is a Key Center for Regulating Feeding Behavior -- 7.2.4 Neurons of the Arcuate Nucleus Detect Nutrients and Whole-Body Energy Status -- 7.3 The Hypothalamus Contains a Heterogeneous Population of Cells -- 7.3.1 Neurons -- 7.3.2 Glial Cells -- 7.3.2.1 Oligodendrocytes -- 7.3.2.2 Tanycytes -- Box 7.2: The Discovery of Microglia by Pío del Río Hortega -- 7.3.2.3 Astrocytes -- 7.3.2.4 Microglia -- 7.4 When Things Go Wrong: Nutrient Excess and Neuroinflammation -- 7.4.1 What Is Inflammation? -- 7.4.2 The CNS Has Immune Privilege -- 7.4.3 Inflammation Develops in the Periphery and CNS During Obesity Through Different Mechanisms -- 7.4.4 Hypothalamic Neuroinflammation Impacts Energy Balance -- 7.5 Methods Used to Investigate Central Feeding Regulation and Hypothalamic Neuroinflammation -- 7.5.1 Human Models -- 7.5.2 Monogenic Rodent Models of Obesity -- 7.5.3 Diet-Induced Obese (DIO) Rodent Models -- 7.5.4 In Vitro Primary Culture -- 7.5.5 Immortalized Cell Lines -- 7.6 Neuroinflammation from the View of the Neuron -- 7.6.1 Fatty Acids Induce Inflammation Through Cell Surface Receptors.
  • 7.6.2 Bioactive Products of Fatty Acid Metabolism Induce Inflammation.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 3-030-62383-1
OCLC-Nummer: 1245665119
Titel-ID: 9925040019606463
Format
1 online resource (xii, 324 pages).
Schlagworte
Neuroglia, Neuroendocrinology, Neuròglia, Neuroendocrinologia