Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Environmental applications of carbon nanomaterials-based devices
Ort / Verlag
Weinheim, Germany : Wiley-VCH,
Erscheinungsjahr
[2022]
Beschreibungen/Notizen
Includes bibliographical references and index.
Cover -- Title Page -- Contents -- 1 Graphene-Based Nanomembranes for Sustainable Water Purification Applications -- 1.1 Introduction -- 1.2 Graphene and GO-Based Membrane Characteristics and Properties -- 1.3 Fabrication of Graphene-Based Nanomembranes for Water Treatment Applications -- 1.3.1 Desalination -- 1.3.2 Treatment for Dyes -- 1.3.3 Graphene Nanomembranes for Salt and Dye Rejection -- 1.3.4 Translation of Graphene Nanomembranes for Real Applications -- 1.4 Graphene Nanomembranes for Heavy Metals Treatment -- 1.4.1 Heavy Metals -- 1.5 Conclusion and Future Perspectives -- Acknowledgments -- Important Websites -- References -- 2 Magnetic Graphene Oxide and Its Composite Nanomaterials: Application in Environmental Decontamination -- 2.1 Introduction -- 2.2 Synthesis of Magnetic Graphene Oxide and Its Composite Nanomaterials -- 2.3 Application of Magnetic Graphene Oxide and Its Composite Nanomaterials -- 2.3.1 Removal of Toxic Metal Contaminants -- 2.3.2 Removal of Toxic Organic Contaminants -- 2.3.3 Removal of Other Contaminants -- 2.4 Conclusion -- Important Websites -- References -- 3 Biomass- or Biowaste-Derived Carbon Nanoparticles as Promising Materials for Electrochemical Sensing Applications -- 3.1 Introduction -- 3.2 Electrochemical Sensors -- 3.3 The Choice of Electrode Materials -- 3.4 Biomass-Derived Porous Carbons -- 3.4.1 Synthesis -- 3.4.2 Structure and Properties -- 3.5 Biomass-Derived Carbons in Electrochemical Sensing -- 3.5.1 H2O2 Sensing from Okra-Derived Carbons -- 3.5.2 Acetaminophen (AM) Detection by Seaweed-Derived Carbons -- 3.5.3 4-Nitrophenol Detection from Mango Leave-Derived Carbons -- 3.5.4 Bisphenol-A (BPA) Detection Using Bamboo Fungi-Derived Carbon -- 3.5.5 Nitrite Ion Detection by Areca Nut-Derived Carbons -- 3.5.6 Catechin Sensing Using Bougainvillea spectabilis-Derived Carbons.
3.5.7 Progesterone Sensing by Onion Peel-Derived Carbons -- 3.5.8 Butein Detection from Oil Palm Leave-Derived Carbons -- 3.6 Conclusion and Future Perspective -- Acknowledgment -- Important Websites -- References -- 4 Applications of Carbon-Based Nanomaterials for Wastewater Treatment -- 4.1 Introduction -- 4.2 Wastewater -- 4.3 Wastewater Treatment Methods -- 4.4 Nanomaterials -- 4.5 Carbon-Based Nanomaterials -- 4.6 Adsorption Mechanisms of CNTs and Graphene -- 4.6.1 Adsorption Through Physical and Chemical Methods -- 4.6.2 Adsorption Through Biological Methods -- 4.6.3 Adsorption Using Deep Eutectic Solvents (DESs) -- 4.6.4 CNT- and Graphene-Based Composite Adsorbents -- 4.7 Membrane-Based Filtration of Contaminants Using CNTs and Graphene-Based Materials -- 4.8 Use of CNTs and Derivative Materials as Disinfecting Agents for Water Purification -- 4.9 Commercial Use of CNMs in Wastewater Treatment -- 4.10 Conclusions -- Important Websites -- References -- 5 Electrochemical Determination of Indigotine Based on Poly(Gibberellic Acid)-Modified Carbon Nanotube Paste Electrode -- 5.1 Introduction -- 5.2 Experimental -- 5.2.1 Chemicals -- 5.2.2 Bare Carbon Nanotube Paste Electrode (BCNTPE) Preparation -- 5.3 Results and Discussion -- 5.3.1 Electropolymerization of BCNTPE with GA -- 5.3.2 FE-SEM Characterization of BCNTPE and PGAMCNTPE -- 5.3.3 EIS Characterization for PGAMCNTPE and BCNTPE -- 5.3.4 CV Behavior of IT at PGAMCNTPE and BCNTPE -- 5.3.5 Variation of IT Behavior at Different pHs -- 5.3.6 Effect of Voltage Sweep Rate -- 5.3.7 Calibration Curve -- 5.3.8 Reproducible and Stable Sensor -- 5.3.9 Interference Analysis -- 5.3.10 Water Sample Analysis -- 5.4 Conclusion -- Acknowledgment -- Important Websites for Reference -- References -- 6 Toxicity of Carbon Nanomaterials -- 6.1 Introduction -- 6.2 Carbon Nanomaterials -- 6.2.1 Fullerene.
6.2.2 Carbon Nanotube -- 6.2.3 Graphene and Graphene Derivatives -- 6.3 Nanotoxicology and Resulting Cytotoxicity or Cellular Toxicity -- 6.4 Assessment of Nanocytotoxicity -- 6.4.1 Respiratory or Pulmonary Toxicity -- 6.4.2 Dermal or Skin Toxicity -- 6.4.3 Cardiovascular Toxicity -- 6.4.4 Reproductive and Developmental Toxicity -- 6.4.5 Hepatotoxicity or Liver Toxicity -- 6.4.6 Ocular Toxicity -- 6.5 Conclusions -- Important Websites -- References -- 7 Fundamentals of Functionalized Carbon Nanomaterials (CNMs) for Environmental Devices and Techniques -- 7.1 Introduction -- 7.2 Synthesis -- 7.2.1 Carbon Nanotubes -- 7.2.2 Graphene -- 7.2.3 Fullerenes -- 7.2.4 Carbon Nanocones -- 7.2.5 Functionalization of Nanomaterials -- 7.3 Applications -- 7.3.1 Nanowires -- 7.3.2 Graphene -- 7.3.3 Fullerenes -- 7.3.4 Carbon Nanocones -- 7.4 Conclusion -- Important Websites -- References -- 8 Fundamental of Functionalized Carbon Nanomaterials for Environmental Devices and Techniques -- 8.1 Introduction -- 8.2 Results and Discussion -- 8.2.1 What Are Carbon Nanomaterials? -- 8.2.2 Functionalization of CNMs -- 8.2.3 CNMs for Environment Devices -- 8.3 Conclusion, Challenges, and Future Prospects -- Acknowledgments -- Important Websites -- References -- 9 Functionalized Magnetic Carbon Nanomaterials for Environmental Remediation -- 9.1 Introduction -- 9.2 Types of Carbon-Based Magnetic Nanocomposites Used in Pollutants Removal from Environment -- 9.2.1 Carbon Nanotubes Based Magnetic Nanocomposites -- 9.2.2 Graphene and Its Derivative Based Magnetic Nanocomposites -- 9.2.3 Fullerenes Based Magnetic Nanocomposites -- 9.2.4 Nanodiamond-Filled Magnetic Nanocomposites -- 9.2.5 Graphitic Carbon Nitride Based Magnetic Nanocomposites -- 9.3 Different Processing Methods for Magnetic Carbon-Based Nanocomposites -- 9.3.1 Melt Blending -- 9.3.2 Hydrothermal Method.
9.3.3 Co-Precipitation Method -- 9.3.4 In Situ Polymerization -- 9.3.5 Sol-Gel Method -- 9.4 Applications of Magnetic Carbon-Based Nanocomposites -- 9.4.1 Adsorption of Heavy Metals -- 9.4.2 Adsorption of Organic Dye -- 9.4.3 Other Organic Pollutants -- 9.5 Future Prospects -- 9.6 Conclusions -- Important Websites -- References -- 10 Functionalized Carbon Nanotubes for Ammonia Sensors -- 10.1 Introduction -- 10.2 Ammonia Sensors -- 10.3 Types and Synthesis of Carbon Nanotubes -- 10.4 Carbon Nanotube-Based Ammonia Sensors -- 10.5 Functionalization of Carbon Nanotubes -- 10.6 Functionalized Carbon Nanotubes for Ammonia Sensors -- 10.7 Conclusions and Future Perspectives -- Acknowledgments -- Important Websites -- References -- 11 Functionalized Carbon Nano Lab-on-a-Chip Devices for Environment -- 11.1 Introduction -- 11.2 Need for Carbon Nano Lab-on-a-Chip Devices for Environment, and Its Advancement -- 11.3 Carbon Nano Lab-on-a-Chip Devices for Environment -- 11.3.1 Renewable Energy Applications -- 11.3.2 Agriculture Applications -- 11.3.3 Biomedical Applications -- 11.3.4 Ocean and Atmospheric Applications -- 11.4 Conclusion -- Important Websites -- References -- 12 Functionalized Carbon Nanotubes (FCNTs) as Novel Drug Delivery Systems: Emergent Perspectives from Applications -- 12.1 About the Chapter -- 12.2 Introduction -- 12.3 Carbon Nanotubes (CNTs) -- 12.4 Classification of CNTs -- 12.4.1 Advantages of Carbon Nanotubes (CNTs) -- 12.4.2 Disadvantages of Carbon Nanotubes (CNTs) -- 12.5 Synthetic Methodologies of CNTs -- 12.5.1 Laser Ablation (LA) Method -- 12.5.2 Electric Arc Discharge (EAD) Method -- 12.5.3 Catalytic Chemical Vapor Deposition (CCVD) Method -- 12.5.4 Electrolysis Method -- 12.6 Purification Techniques of CNTs -- 12.6.1 Vacuum Oven Treatment -- 12.6.2 Microwave Treatment -- 12.6.3 Chemical Oxidation -- 12.6.4 Piranha Treatment.
12.6.5 Annealing -- 12.6.6 Ultrasonication -- 12.6.7 Magnetic Purification -- 12.6.8 Cutting -- 12.6.9 Chromatography -- 12.7 Need of Functionalization of Carbon Nanotubes (CNTs) -- 12.8 Functionalization Strategies of CNTs -- 12.8.1 Covalent Functionalization -- 12.8.2 Non-covalent Functionalization -- 12.9 Advantages of Functionalized Carbon Nanotubes (FCNTs) -- 12.10 Medicinal Applications of Functionalized Carbon Nanotubes (FCNTs) -- 12.10.1 FCNTs in Drug Delivery -- 12.10.2 FCNTs in Drug Loading -- 12.10.3 FCNTs in Drug Targeting -- 12.11 Biocompatibility and Toxicity Considerations of FCNTs -- 12.12 Conclusion and Future Perspective -- Important Websites -- References -- 13 Adsorptive Removal of Fluoride by Carbon Nanomaterials -- 13.1 Introduction -- 13.2 Geochemistry of Fluoride -- 13.3 Fluoride in Water -- 13.3.1 Dynamics of Fluoride in Groundwater -- 13.4 Fluoride Solubility and Temperature -- 13.5 Sources of Fluoride in the Environment -- 13.6 Health Effects of Fluoride -- 13.7 Removal Technologies -- 13.8 Classification of Adsorbents -- 13.9 Carbon-Based Adsorbents -- 13.9.1 Carbon Nanomaterials (CNM) -- 13.10 Conclusion -- Acknowledgment -- Important Websites -- References -- 14 Functionalized Carbon Nano-Membranes Based Devices for Water Purification Technology -- 14.1 Introduction -- 14.2 Desalination -- 14.3 Removal of Particles (Ions, Heavy Metals) -- 14.4 Removal of Microorganisms -- 14.5 Final Considerations -- Important Websites -- References -- 15 Functionalized Bio-carbon Nanomaterials for Environmental Utilizations -- 15.1 Introduction -- 15.2 Carbon Nanomaterial -- 15.3 Synthesis of Fullerenes -- 15.4 Synthesis of CNTs -- 15.5 Synthesis of Graphenes -- 15.6 Bio-carbon Nanomaterials -- 15.7 Functionalization of Nanomaterials -- 15.7.1 Importance of Functionalization -- 15.8 Nanocellulose.