Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 54
1st ed, 2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Reactive extrusion : principles and applications
Auflage
1st ed
Ort / Verlag
Weinheim, Germany : Wiley-VCH,
Erscheinungsjahr
2018
Beschreibungen/Notizen
  • Includes bibliographical references at the end of each chapters and index.
  • Cover -- Title Page -- Copyright -- Contents -- Preface -- List of Contributors -- Part I Introduction -- Chapter 1 Introduction to Reactive Extrusion -- References -- Part II Introduction to Twin‐Screw Extruder for Reactive Extrusion -- Chapter 2 The Co‐rotating Twin‐Screw Extruder for Reactive Extrusion -- 2.1 Introduction -- 2.2 Development and Key Figures of the Co‐rotating Twin‐Screw Extruder -- 2.3 Screw Elements -- 2.4 Co‐rotating Twin‐Screw Extruder - Unit Operations -- 2.4.1 Feeding -- 2.4.2 Upstream Feeding -- 2.4.3 Downstream Feeding -- 2.4.4 Melting Mechanisms -- 2.4.5 Thermal Energy Transfer -- 2.4.6 Mechanical Energy Transfer -- 2.4.7 Mixing Mechanisms -- 2.4.8 Devolatilization/Degassing -- 2.4.9 Discharge -- 2.5 Suitability of Twin‐Screw Extruders for Chemical Reactions -- 2.6 Processing of TPE‐V -- 2.7 Polymerization of Thermoplastic Polyurethane (TPU) -- 2.8 Grafting of Maleic Anhydride on Polyolefines -- 2.9 Partial Glycolysis of PET -- 2.10 Peroxide Break‐Down of Polypropylene -- 2.11 Summary -- References -- Part III Simulation and Modeling -- Chapter 3 Modeling of Twin Screw Reactive Extrusion: Challenges and Applications -- 3.1 Introduction -- 3.1.1 Presentation of the Reactive Extrusion Process -- 3.1.2 Examples of Industrial Applications -- 3.1.3 Interest of Reactive Extrusion Process Modeling -- 3.2 Principles and Challenges of the Modeling -- 3.2.1 Twin Screw Flow Module -- 3.2.2 Kinetic Equations -- 3.2.3 Rheokinetic Model -- 3.2.4 Coupling -- 3.2.5 Open Problems and Remaining Challenges -- 3.3 Examples of Modeling -- 3.3.1 Esterification of EVA Copolymer -- 3.3.2 Controlled Degradation of Polypropylene -- 3.3.3 Polymerization of &amp -- epsiv -- ‐Caprolactone -- 3.3.4 Starch Cationization -- 3.3.5 Optimization and Scale‐up -- 3.4 Conclusion -- References.
  • Chapter 4 Measurement and Modeling of Local Residence Time Distributions in a Twin‐Screw Extruder -- 4.1 Introduction -- 4.2 Measurement of the Global and Local RTD -- 4.2.1 Theory of RTD -- 4.2.2 In‐line RTD Measuring System -- 4.2.3 Extruder and Screw Configurations -- 4.2.4 Performance of the In‐line RTD Measuring System -- 4.2.5 Effects of Screw Speed and Feed Rate on RTD -- 4.2.6 Assessment of the Local RTD in the Kneading Disk Zone -- 4.3 Residence Time, Residence Revolution, and Residence Volume Distributions -- 4.3.1 Partial RTD, RRD, and RVD -- 4.3.2 Local RTD, RRD, and RVD -- 4.4 Modeling of Local Residence Time Distributions -- 4.4.1 Kinematic Modeling of Distributive Mixing -- 4.4.2 Numerical Simulation -- 4.4.3 Experimental Validation -- 4.4.4 Distributive Mixing Performance and Efficiency -- 4.5 Summary -- References -- Chapter 5 In‐process Measurements for Reactive Extrusion Monitoring and Control -- 5.1 Introduction -- 5.2 Requirements of In‐process Monitoring of Reactive Extrusion -- 5.3 In‐process Optical Spectroscopy -- 5.4 In‐process Rheometry -- 5.5 Conclusions -- Acknowledgment -- References -- Part IV Synthesis Concepts -- Chapter 6 Exchange Reaction Mechanisms in the Reactive Extrusion of Condensation Polymers -- 6.1 Introduction -- 6.2 Interchange Reaction in Polyester/Polyester Blends -- 6.3 Interchange Reaction in Polycarbonate/Polyester Blends -- 6.4 Interchange Reaction in Polyester/Polyamide Blends -- 6.5 Interchange Reaction in Polycarbonate/Polyamide Blends -- 6.6 Interchange Reaction in Polyamide/Polyamide Blends -- 6.7 Conclusions -- References -- Chapter 7 In situ Synthesis of Inorganic and/or Organic Phases in Thermoplastic Polymers by Reactive Extrusion -- 7.1 Introduction -- 7.2 Nanocomposites -- 7.2.1 Synthesis of in situ Nanocomposites -- 7.2.2 Some Specific Applications.
  • 7.2.2.1 Antibacterial Properties of PP/TiO2 Nanocomposites -- 7.2.2.2 Flame‐Retardant Properties -- 7.2.2.3 Protonic Conductivity -- 7.3 Polymerization of a Thermoplastic Minor Phase: Toward Blend Nanostructuration -- 7.4 Polymerization of a Thermoset Minor Phase Under Shear -- 7.4.1 Thermoplastic Polymer/Epoxy‐Amine Miscible Blends -- 7.4.2 Examples of Stabilization of Thermoplastic Polymer/Epoxy‐Amine Blends -- 7.4.3 Blends of Thermoplastic Polymer with Monomers Crosslinking via Radical Polymerization -- 7.5 Conclusion -- References -- Chapter 8 Concept of (Reactive) Compatibilizer‐Tracer for Emulsification Curve Build‐up, Compatibilizer Selection, and Process Optimization of Immiscible Polymer Blends -- 8.1 Introduction -- 8.2 Emulsification Curves of Immiscible Polymer Blends in a Batch Mixer -- 8.3 Emulsification Curves of Immiscible Polymer Blends in a Twin‐Screw Extruder Using the Concept of (Reactive) Compatibilizer -- 8.3.1 Synthesis of (Reactive) Compatibilizer‐Tracers -- 8.3.2 Development of an In‐line Fluorescence Measuring Device -- 8.3.3 Experimental Procedure for Emulsification Curve Build‐up -- 8.3.4 Compatibilizer Selection Using the Concept of Compatibilizer‐Tracer -- 8.3.5 Process Optimization Using the Concept of Compatibilizer‐Tracer -- 8.3.5.1 Effect of Screw Speed -- 8.3.5.2 Effects of the Type of Mixer -- 8.3.6 Section Summary -- 8.4 Emulsification Curves of Reactive Immiscible Polymer Blends in a Twin‐Screw Exturder -- 8.4.1 Reaction Kinetics between Reactive Functional Groups -- 8.4.2 (Non‐reactive) Compatibilizers Versus Reactive Compatibilizers -- 8.4.3 An Example of Reactive Compatibilizer‐Tracer -- 8.4.4 Assessment of the Morphology Development of Reactive Immiscible Polymer Blends Using the Concept of Reactive Compatibilizer.
  • 8.4.5 Emulsification Curve Build‐up in a Twin‐Screw Extruder Using the Concept of Reactive Compatibilizer‐Tracer -- 8.4.6 Assessment of the Effects of Processing Parameters Using the Concept of Reactive Compatibilizer‐Tracer -- 8.4.6.1 Effect of the Reactive Compatibilizer‐Tracer Injection Location -- 8.4.6.2 Effect of the Blend Composition -- 8.4.6.3 Effect of the Geometry of Screw Elements -- 8.5 Conclusion -- References -- Part V Selected Examples of Synthesis -- Chapter 9 Nano‐structuring of Polymer Blends by in situ Polymerization and in situ Compatibilization Processes -- 9.1 Introduction -- 9.2 Morphology Development of Classical Immiscible Polymer Blending Processes -- 9.2.1 Solid-Liquid Transition Stage -- 9.2.2 Melt Flow Stage -- 9.2.3 Effect of Compatibilizer -- 9.3 In situ Polymerization and in situ Compatibilization of Polymer Blends -- 9.3.1 Principles -- 9.3.2 Classical Polymer Blending Versus in situ Polymerization and in situ Compatibilization -- 9.3.3 Examples of Nano‐structured Polymer Blends by in situ Polymerization and in situ Compatibilization -- 9.3.3.1 PP/PA6 Nano‐blends -- 9.3.3.2 PPO/PA6 Nano‐blends -- 9.3.3.3 PA6/Core-Shell Blends -- 9.4 Summary -- References -- Chapter 10 Reactive Comb Compatibilizers for Immiscible Polymer Blends -- 10.1 Introduction -- 10.2 Synthesis of Reactive Comb Polymers -- 10.3 Reactive Compatibilization of Immiscible Polymer Blends by Reactive Comb Polymers -- 10.3.1 PLLA/PVDF Blends Compatibilized by Reactive Comb Polymers -- 10.3.1.1 Comparison of the Compatibilization Efficiency of Reactive Linear and Reactive Comb Polymers -- 10.3.1.2 Effects of the Molecular Structures on the Compatibilization Efficiency of Reactive Comb Polymers -- 10.3.2 PLLA/ABS Blends Compatibilized by Reactive Comb Polymers -- 10.4 Immiscible Polymer Blends Compatiblized by Janus Nanomicelles.
  • 10.5 Conclusions and Further Remarks -- References -- Chapter 11 Reactive Compounding of Highly Filled Flame Retardant Wire and Cable Compounds -- 11.1 Introduction -- 11.2 Formulations and Ingredients -- 11.2.1 Typical Formulation and Variations for the Evaluation -- 11.2.2 Principle of Silane Crosslinking by Reactive Extrusion -- 11.2.3 Production of Aluminum Trihydroxide (ATH) -- 11.2.4 Mode of Action of Aluminum Trihydroxide -- 11.2.5 Selection of Suitable ATH Grades -- 11.3 Processing -- 11.3.1 Compounding Line -- 11.3.2 Compounding Process for Cross Linkable HFFR Products -- 11.3.2.1 Two‐Step Compounding Process -- 11.3.2.2 One‐Step Compounding Process -- 11.3.2.3 Advantages and Disadvantages of the Two Process Concepts (Two‐Step vs One‐Step) -- 11.4 Evaluation and Results on the Compound -- 11.4.1 Crosslinking Density -- 11.4.2 Mechanical Properties -- 11.4.3 Aging Performance -- 11.4.4 Fire Performance on Laboratory Scale -- 11.4.5 Results of the Non‐Polar Compounds -- 11.5 Cable Trials -- 11.5.1 Fire Performance of Electrical Cables According to EN 50399 -- 11.5.2 Burning Test on Experimental Cables According to EN 50399 -- 11.6 Conclusions -- References -- Chapter 12 Thermoplastic Vulcanizates (TPVs) by the Dynamic Vulcanization of Miscible or Highly Compatible Plastic/Rubber Blends -- 12.1 Introduction -- 12.2 Morphological Development of TPVs from Immiscible Polymer Blends -- 12.3 TPVs from Miscible PVDF/ACM Blends -- 12.4 TPVs from Highly Compatible EVA/EVM Blends -- 12.5 Conclusions and Future Remarks -- References -- Part VI Selected Examples of Processing -- Chapter 13 Reactive Extrusion of Polyamide 6 with Integrated Multiple Melt Degassing -- 13.1 Introduction -- 13.2 Synthesis of Polyamide 6 -- 13.2.1 Hydrolytic Polymerization of Polyamide 6 -- 13.2.2 Anionic Polymerization of Polyamide 6.
  • 13.3 Review of Reactive Extrusion of Polyamide 6 in Twin‐Screw Extruders.
  • Description based on online resource; title from PDF title page (ebrary, viewed October 25, 2017).
Sprache
Identifikatoren
ISBN: 3-527-80155-3, 1-5231-1856-3, 3-527-80153-7, 3-527-80154-5
OCLC-Nummer: 1004960838
Titel-ID: 9925037176706463
Format
1 online resource (415 pages) :; illustrations (some color)
Schlagworte
Extrusion process