Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Intelligent IoT for the digital world : incorporating 5G communications and fog/edge computing technologies
Auflage
First edition
Ort / Verlag
Hoboken, NJ : Wiley,
Erscheinungsjahr
[2021]
Beschreibungen/Notizen
Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 IoT Technologies and Applications -- 1.1 Introduction -- 1.2 Traditional IoT Technologies -- 1.2.1 Traditional IoT System Architecture -- 1.2.1.1 Sensing Layer -- 1.2.1.2 Network Layer -- 1.2.1.3 Application Layer -- 1.2.2 IoT Connectivity Technologies and Protocols -- 1.2.2.1 Low‐power and Short‐range Connectivity Technologies -- 1.2.2.2 Low Data Rate and Wide‐area Connectivity Technologies -- 1.2.2.3 Emerging IoT Connectivity Technologies and Protocols -- 1.3 Intelligent IoT Technologies -- 1.3.1 Data Collection Technologies -- 1.3.1.1 mmWave -- 1.3.1.2 Massive MIMO -- 1.3.1.3 Software Defined Networks -- 1.3.1.4 Network Slicing -- 1.3.1.5 Time Sensitive Network -- 1.3.1.6 Multi‐user Access Control -- 1.3.1.7 Muti‐hop Routing Protocol -- 1.3.2 Computing Power Network -- 1.3.2.1 Intelligent IoT Computing Architecture -- 1.3.2.2 Edge and Fog Computing -- 1.3.3 Intelligent Algorithms -- 1.3.3.1 Big Data -- 1.3.3.2 Artificial Intelligence -- 1.4 Typical Applications -- 1.4.1 Environmental Monitoring -- 1.4.2 Public Safety Surveillance -- 1.4.3 Military Communication -- 1.4.4 Intelligent Manufacturing and Interactive Design -- 1.4.5 Autonomous Driving and Vehicular Networks -- 1.5 Requirements and Challenges for Intelligent IoT Services -- 1.5.1 A Generic and Flexible Multi‐tier Intelligence IoT Architecture -- 1.5.2 Lightweight Data Privacy Management in IoT Networks -- 1.5.3 Cross‐domain Resource Management for Intelligent IoT Services -- 1.5.4 Optimization of Service Function Placement, QoS, and Multi‐operator Network Sharing for Intelligent IoT Services -- 1.5.5 Data Time stamping and Clock Synchronization Services for Wide‐area IoT Systems -- 1.6 Conclusion -- References -- Chapter 2 Computing and Service Architecture for Intelligent IoT.
2.1 Introduction -- 2.2 Multi‐tier Computing Networks and Service Architecture -- 2.2.1 Multi‐tier Computing Network Architecture -- 2.2.2 Cost Aware Task Scheduling Framework -- 2.2.2.1 Hybrid Payment Model -- 2.2.2.2 Weighted Cost Function -- 2.2.2.3 Distributed Task Scheduling Algorithm -- 2.2.3 Fog as a Service Technology -- 2.2.3.1 FA2ST Framework -- 2.2.3.2 FA2ST Application Deployment -- 2.2.3.3 FA2ST Application Management -- 2.3 Edge‐enabled Intelligence for Industrial IoT -- 2.3.1 Introduction and Background -- 2.3.1.1 Intelligent Industrial IoT -- 2.3.1.2 Edge Intelligence -- 2.3.1.3 Challenges -- 2.3.2 Boomerang Framework -- 2.3.2.1 Framework Overview -- 2.3.2.2 Prediction Model and Right‐sizing Model -- 2.3.2.3 Boomerang Optimizer -- 2.3.2.4 Boomerang with DRL -- 2.3.3 Performance Evaluation -- 2.3.3.1 Emulation Environment -- 2.3.3.2 Evaluation Results -- 2.4 Fog‐enabled Collaborative SLAM of Robot Swarm -- 2.4.1 Introduction and Background -- 2.4.2 A Fog‐enabled Solution -- 2.4.2.1 System Architecture -- 2.4.2.2 Practical Implementation -- 2.5 Conclusion -- References -- Chapter 3 Cross‐Domain Resource Management Frameworks -- 3.1 Introduction -- 3.2 Joint Computation and Communication Resource Management for Delay‐Sensitive Applications -- 3.2.1 2C Resource Management Framework -- 3.2.1.1 System Model -- 3.2.1.2 Problem Formulation -- 3.2.2 Distributed Resource Management Algorithm -- 3.2.2.1 Paired Offloading of Non‐splittable Tasks -- 3.2.2.2 Parallel Offloading of Splittable Tasks -- 3.2.3 Delay Reduction Performance -- 3.2.3.1 Price of Anarchy -- 3.2.3.2 System Average Delay -- 3.2.3.3 Number of Beneficial TNs -- 3.2.3.4 Convergence -- 3.3 Joint Computing, Communication, and Caching Resource Management for Energy‐efficient Applications -- 3.3.1 Fog‐enabled 3C Resource Management Framework -- 3.3.1.1 System Resources.
3.3.1.2 Task Model -- 3.3.1.3 Task Execution -- 3.3.1.4 Problem Statement -- 3.3.2 Fog‐enabled 3C Resource Management Algorithm -- 3.3.2.1 F3C Algorithm Overview -- 3.3.2.2 F3C Algorithm for a Single Task -- 3.3.2.3 F3C Algorithm For Multiple Tasks -- 3.3.3 Energy Saving Performance -- 3.3.3.1 Energy Saving Performance with Different Task Numbers -- 3.3.3.2 Energy Saving Performance with Different Device Numbers -- 3.4 Case Study: Energy‐efficient Resource Management in Tactile Internet -- 3.4.1 Fog‐enabled Tactile Internet Architecture -- 3.4.2 Response Time and Power Efficiency Trade‐off -- 3.4.2.1 Response Time Analysis and Minimization -- 3.4.2.2 Trade‐off between Response Time and Power Efficiency -- 3.4.3 Cooperative Fog Computing -- 3.4.3.1 Response Time Analysis for Cooperative Fog Computing with N FNs -- 3.4.3.2 Response Time and Power Efficiency Trade‐off for Cooperative Fog Computing Networks -- 3.4.4 Distributed Optimization for Cooperative Fog Computing -- 3.4.5 A City‐wide Deployment of Fog Computing‐supported Self‐driving Bus System -- 3.4.5.1 Simulation Setup for Traffic Generated by a Self‐driving Bus -- 3.4.5.2 Simulation Setup for a Fog Computing Network -- 3.4.5.3 Numerical Results -- 3.5 Conclusion -- References -- Chapter 4 Dynamic Service Provisioning Frameworks -- 4.1 Online Orchestration of Cross‐edge Service Function Chaining -- 4.1.1 Introduction -- 4.1.2 Related Work -- 4.1.3 System Model for Cross‐edge SFC Deployment -- 4.1.3.1 Overview of the Cross‐edge System -- 4.1.3.2 Optimization Space -- 4.1.3.3 Cost Structure -- 4.1.3.4 The Cost Minimization Problem -- 4.1.4 Online Optimization for Long‐term Cost Minimization -- 4.1.4.1 Problem Decomposition via Relaxation and Regularization -- 4.1.4.2 A Randomized Dependent Rounding Scheme -- 4.1.4.3 Traffic Re‐routing -- 4.1.5 Performance Analysis -- 4.1.5.1 The Basic Idea.
4.1.5.2 Competitive Ratio of ORFA -- 4.1.5.3 Rounding Gap of RDIP -- 4.1.5.4 The Overall Competitive Ratio -- 4.1.6 Performance Evaluation -- 4.1.6.1 Experimental Setup -- 4.1.6.2 Evaluation Results -- 4.1.7 Future Directions -- 4.2 Dynamic Network Slicing for High‐quality Services -- 4.2.1 Service and User Requirements -- 4.2.2 Related Work -- 4.2.3 System Model and Problem Formulation -- 4.2.3.1 Fog Computing -- 4.2.3.2 Existing Network Slicing Architectures -- 4.2.3.3 Regional SDN‐based Orchestrator -- 4.2.3.4 Problem Formulation -- 4.2.4 Implementation and Numerical Results -- 4.2.4.1 Dynamic Network Slicing in 5G Networks -- 4.2.4.2 Numerical Results -- 4.3 Collaboration of Multiple Network Operators -- 4.3.1 Service and User Requirements -- 4.3.2 System Model and Problem Formulation -- 4.3.2.1 IoT Solutions in 3GPP Release 13 -- 4.3.2.2 Challenges for Massive IoT Deployment -- 4.3.2.3 Inter‐operator Network Sharing Architecture -- 4.3.2.4 Design Issues -- 4.3.3 Performance Analysis -- 4.4 Conclusion -- References -- Chapter 5 Lightweight Privacy‐Preserving Learning Schemes* -- 5.1 Introduction -- 5.2 System Model and Problem Formulation -- 5.3 Solutions and Results -- 5.3.1 A Lightweight Privacy‐preserving Collaborative Learning Scheme -- 5.3.1.1 Random Gaussian Projection (GRP) -- 5.3.1.2 Gaussian Random Projection Approach -- 5.3.1.3 Illustrating Examples -- 5.3.1.4 Evaluation Methodology and Datasets -- 5.3.1.5 Evaluation Results with the MNIST Dataset -- 5.3.1.6 Evaluation Results with a Spambase Dataset -- 5.3.1.7 Summary -- 5.3.1.8 Implementation and Benchmark -- 5.3.2 A Differentially Private Collaborative Learning Scheme -- 5.3.2.1 Approach Overview -- 5.3.2.2 Achieving ϵ‐Differential Privacy -- 5.3.2.3 Performance Evaluation -- 5.3.3 A Lightweight and Unobtrusive Data Obfuscation Scheme for Remote Inference -- 5.3.3.1 Approach Overview.
5.3.3.2 Case Study 1: Free Spoken Digit (FSD) Recognition -- 5.3.3.3 Case Study 2: Handwritten Digit (MNIST) Recognition -- 5.3.3.4 Case Study 3: American Sign Language (ASL) Recognition -- 5.3.3.5 Implementation and Benchmark -- 5.4 Conclusion -- References -- Chapter 6 Clock Synchronization for Wide‐area Applications1 -- 6.1 Introduction -- 6.2 System Model and Problem Formulation -- 6.2.1 Natural Timestamping for Wireless IoT Devices -- 6.2.2 Clock Synchronization for Wearable IoT Devices -- 6.3 Natural Timestamps in Powerline Electromagnetic Radiation -- 6.3.1 Electrical Network Frequency Fluctuations and Powerline Electromagnetic Radiation -- 6.3.2 Electromagnetic Radiation‐based Natural Timestamping -- 6.3.2.1 Hardware -- 6.3.2.2 ENF Extraction -- 6.3.2.3 Natural Timestamp and Decoding -- 6.3.3 Implementation and Benchmark -- 6.3.3.1 Timestamping Parameter Settings -- 6.3.3.2 Z1 Implementation and Benchmark -- 6.3.4 Evaluation in Office and Residential Environments -- 6.3.4.1 Deployment and Settings -- 6.3.4.2 Evaluation Results -- 6.3.5 Evaluation in a Factory Environment -- 6.3.6 Applications -- 6.3.6.1 Time Recovery -- 6.3.6.2 Run‐time Clock Verification -- 6.3.6.3 Secure Clock Synchronization -- 6.4 Wearables Clock Synchronization Using Skin Electric Potentials -- 6.4.1 Motivation -- 6.4.2 Measurement Study -- 6.4.2.1 Measurement Setup -- 6.4.2.2 iSEP Sensing under Various Settings -- 6.4.3 TouchSync System Design -- 6.4.3.1 TouchSync Workflow -- 6.4.3.2 iSEP Signal Processing -- 6.4.3.3 NTP Assisted with Dirac Combs -- 6.4.4 TouchSync with Internal Periodic Signal -- 6.4.4.1 Extended Design -- 6.4.4.2 Numeric Experiments -- 6.4.4.3 Impact of Clock Skews -- 6.4.5 Implementation -- 6.4.6 Evaluation -- 6.4.6.1 Signal Strength and Wearing Position -- 6.4.6.2 Impact of High‐Power Appliances on TouchSync.
6.4.6.3 Evaluation in Various Environments.
"This book focuses on a novel type of Internet of Things (IoT) architecture, i.e., Web of Things (WoT) with open character, which naturally breaks the barriers among various IoT vertical applications. Key technologies from physical to platform level are presented and compared, especially the Narrow Band Internet of Things (NB-IoT) technology. Applications that are typical to IoT are discussed with different data transmission requirements. In the book's first part, the requirements of WoT applications on 5G is described. Next, detailed information on WoT technologies are presented. Later, three typical WoT applications are introduced, including the monitoring application of south-to-north water diversion projects, smart driving applications, and network optimization applications. Lastly, the authors explore testing and authentication of IoT key technologies, together with the required equipment, platform, and outdoor environment development"-- Provided by publisher