Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
An elementary introduction to statistical learning theory
Auflage
1st ed
Beschreibungen/Notizen
Description based upon print version of record.
Includes bibliographical references and index.
An Elementary Introduction to Statistical Learning Theory; Contents; Preface; 1 Introduction: Classification, Learning, Features, and Applications; 1.1 Scope; 1.2 Why Machine Learning?; 1.3 Some Applications; 1.3.1 Image Recognition; 1.3.2 Speech Recognition; 1.3.3 Medical Diagnosis; 1.3.4 Statistical Arbitrage; 1.4 Measurements, Features, and Feature Vectors; 1.5 The Need for Probability; 1.6 Supervised Learning; 1.7 Summary; 1.8 Appendix: Induction; 1.9 Questions; 1.10 References; 2 Probability; 2.1 Probability of Some Basic Events; 2.2 Probabilities of Compound Events
2.3 Conditional Probability2.4 Drawing Without Replacement; 2.5 A Classic Birthday Problem; 2.6 Random Variables; 2.7 Expected Value; 2.8 Variance; 2.9 Summary; 2.10 Appendix: Interpretations of Probability; 2.11 Questions; 2.12 References; 3 Probability Densities; 3.1 An Example in Two Dimensions; 3.2 Random Numbers in [0,1]; 3.3 Density Functions; 3.4 Probability Densities in Higher Dimensions; 3.5 Joint and Conditional Densities; 3.6 Expected Value and Variance; 3.7 Laws of Large Numbers; 3.8 Summary; 3.9 Appendix: Measurability; 3.10 Questions; 3.11 References
4 The Pattern Recognition Problem4.1 A Simple Example; 4.2 Decision Rules; 4.3 Success Criterion; 4.4 The Best Classifier: Bayes Decision Rule; 4.5 Continuous Features and Densities; 4.6 Summary; 4.7 Appendix: Uncountably Many; 4.8 Questions; 4.9 References; 5 The Optimal Bayes Decision Rule; 5.1 Bayes Theorem; 5.2 Bayes Decision Rule; 5.3 Optimality and Some Comments; 5.4 An Example; 5.5 Bayes Theorem and Decision Rule with Densities; 5.6 Summary; 5.7 Appendix: Defining Conditional Probability; 5.8 Questions; 5.9 References; 6 Learning from Examples; 6.1 Lack of Knowledge of Distributions
6.2 Training Data6.3 Assumptions on the Training Data; 6.4 A Brute Force Approach to Learning; 6.5 Curse of Dimensionality, Inductive Bias, and No Free Lunch; 6.6 Summary; 6.7 Appendix: What Sort of Learning?; 6.8 Questions; 6.9 References; 7 The Nearest Neighbor Rule; 7.1 The Nearest Neighbor Rule; 7.2 Performance of the Nearest Neighbor Rule; 7.3 Intuition and Proof Sketch of Performance; 7.4 Using more Neighbors; 7.5 Summary; 7.6 Appendix: When People use Nearest Neighbor Reasoning; 7.6.1 Who Is a Bachelor?; 7.6.2 Legal Reasoning; 7.6.3 Moral Reasoning; 7.7 Questions; 7.8 References
8 Kernel Rules8.1 Motivation; 8.2 A Variation on Nearest Neighbor Rules; 8.3 Kernel Rules; 8.4 Universal Consistency of Kernel Rules; 8.5 Potential Functions; 8.6 More General Kernels; 8.7 Summary; 8.8 Appendix: Kernels, Similarity, and Features; 8.9 Questions; 8.10 References; 9 Neural Networks: Perceptrons; 9.1 Multilayer Feedforward Networks; 9.2 Neural Networks for Learning and Classification; 9.3 Perceptrons; 9.3.1 Threshold; 9.4 Learning Rule for Perceptrons; 9.5 Representational Capabilities of Perceptrons; 9.6 Summary; 9.7 Appendix: Models of Mind; 9.8 Questions; 9.9 References
10 Multilayer Networks
A thought-provoking look at statistical learning theory and its role in understanding human learning and inductive reasoning A joint endeavor from leading researchers in the fields of philosophy and electrical engineering, An Elementary Introduction to Statistical Learning Theory is a comprehensive and accessible primer on the rapidly evolving fields of statistical pattern recognition and statistical learning theory. Explaining these areas at a level and in a way that is not often found in other books on the topic, the authors present the basic theory behind contemporary ma
English
Description based on publisher supplied metadata and other sources.