Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Third edition, [2021]

Details

Autor(en) / Beteiligte
Titel
Green chemistry : environmentally benign reactions
Auflage
Third edition
Ort / Verlag
Cham, Switzerland : Springer,
Erscheinungsjahr
[2021]
Link zum Volltext
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Intro -- Foreword -- Preface to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- Contents -- About the Author -- 1 Green Chemistry -- 1.1 Introduction -- 1.2 What Is Green Chemistry? -- 1.3 Need for Green Chemistry -- 1.4 Obstacles in the Pursuit of the Goals of Green Chemistry -- 1.5 Principles of Green Chemistry -- 1.6 Explanation of the 12 Principles of Green Chemistry -- 1.7 Planning a Green Synthesis in a Chemical Laboratory -- 1.7.1 Percentage Atom Utilization -- 1.7.2 Evaluating the Type of the Reaction Involved -- 1.7.3 Selection of Appropriate Solvent -- 1.7.4 Reagents -- 1.7.5 Use of Protecting Groups -- 1.7.6 Use of Catalysts -- 1.7.7 Energy Requirement -- 1.8 Some Examples of Green Synthesis -- 1.8.1 Adipic Acid -- 1.8.2 Catechol -- 1.8.3 Disodium Iminodiacetate -- 1.8.4 Hofmann Elimination -- 1.8.5 Benzoic Acid from Methyl Benzoate -- 1.8.6 Benzoic Acid by Oxidation of Toluene -- 1.8.7 Oxidation of Alcohols to Carbonyl Compounds -- 1.8.8 Diels Alder Reaction -- 1.8.9 Decarboxylation Reactions -- 1.8.10 Sonochemical Simmons-Smith Reaction -- 1.8.11 Surfactants for Carbon Dioxide -- 1.8.12 A Safe Marine Antifoulant -- References -- 2 Green Reactions -- 2.1 Acyloin Condensation [1] -- 2.1.1 Acyloin Condensation Using Coenzyme, Thiamine -- 2.1.2 Applications -- 2.2 Aldol Condensation [6] -- 2.2.1 Acid-Catalysed Aldol Condensation -- 2.2.2 Crossed Aldol Condensation -- 2.2.3 Aldol Type Condensations of Aldehydes with Nitroalkanes and Nitriles -- 2.2.4 Vinylogous Aldol Reaction -- 2.2.5 Aldol Condensation of Silyl Enol Ethers in Aqueous Media -- 2.2.6 Aldol Condensation in Solid Phase -- 2.2.7 Aldol Condensation in Supercritical Water -- 2.2.8 Aldol Condensation in Ionic Liquids -- 2.2.9 Asymmetric Aldol Condensations -- 2.2.10 Applications -- 2.3 Arndt-Eistert Synthesis [23].
  • 2.3.1 Applications (Scheme 2.41) -- 2.4 Baeyer-Villiger Oxidation -- 2.4.1 Baeyer-Villiger Oxidation in Aqueous Phase -- 2.4.2 Baeyer-Villiger Oxidation in Solid State -- 2.4.3 Enzymatic Baeyer-Villiger Oxidation -- 2.4.4 Applications -- 2.5 Baker-Venkataraman Rearrangement [43] -- 2.5.1 PTC-Catalysed Synthesis of Flavones -- 2.5.2 Application -- 2.6 Barbier Reaction [45] -- 2.6.1 Barbier Reaction Under Sonication -- 2.6.2 Applications (Scheme 2.70) -- 2.7 Barton Reaction -- 2.7.1 Applications (Scheme 2.73) -- 2.8 Baylis-Hillman Reaction -- 2.8.1 Baylis-Hillman Reaction Using Microwaves -- 2.8.2 Baylis-Hillman Reaction in Supercritical Carbon Dioxide -- 2.8.3 Baylis-Hillman Reaction in Ionic Liquids -- 2.8.4 Baylis-Hillman Reaction in Polyethylene Glycol (PEG) -- 2.9 Beckmann Rearrangement -- 2.9.1 Beckmann Rearrangement Under Microwave Irradiation -- 2.9.2 Beckmann Rearrangement in Ionic Liquids -- 2.10 Benzil-Benzilic Rearrangement -- 2.10.1 Benzil-Benzilic Acid Rearrangement under Microwave Irradiation -- 2.10.2 Applications -- 2.11 Benzoin Condensation [90] -- 2.11.1 Benzoin Condensation Under Catalytic Conditions -- 2.11.2 Applications -- 2.12 Biginelli Reaction [100] -- 2.12.1 Biginelli Reaction Under Microwave Irradiation -- 2.12.2 Biginelli Reaction in Ionic Liquids -- 2.13 Bouveault Reaction [103] -- 2.13.1 Bouveault Reactions Under Sonication -- 2.14 Cannizzaro Reaction [106] -- 2.14.1 Crossed Cannizzaro Reaction -- 2.14.2 Intramolecular Cannizzaro Reaction -- 2.14.3 Cannizzaro Reactions Under Sonication -- 2.14.4 Cannizzaro Reactions in Solid State -- 2.14.5 Applications (Scheme 2.118) -- 2.15 Claisen Rearrangement [113] -- 2.15.1 Claisen Rearrangement in Water -- 2.15.2 Claisen Rearrangement in Near Critical Water -- 2.15.3 Applications (Classical Claisen Condensation) -- 2.15.4 Applications (Aqueous Phase Claisen Rearrangement).
  • 2.16 Claisen-Schmidt Reaction [130] -- 2.16.1 Claisen-Schmidt Reaction in Aqueous Phase -- 2.16.2 Claisen-Schmidt Reaction in Ionic Liquids -- 2.16.3 Applications [137] (Scheme 2.136) -- 2.17 Clemmensen Reduction -- 2.17.1 Applications (Scheme 2.140) -- 2.18 Curtius Rearrangement -- 2.19 Dakin Reaction [149] -- 2.19.1 Dakin Reaction Under Ultrasonic Irradiation -- 2.19.2 Dakin Reaction in Solid State -- 2.19.3 Applications -- 2.20 Darzens Reaction -- 2.20.1 Darzens Reaction in the Presence of Phase Transfer Catalyst -- 2.20.2 Applications -- 2.21 Dieckmann Condensation -- 2.21.1 Dieckmann Condensation in Solid State -- 2.21.2 Dieckmann Condensation Under Sonication -- 2.21.3 Dieckmann Condensation Using Polymer Support Technique -- 2.21.4 Applications -- 2.22 Diels-Alder Reaction [176] -- 2.22.1 Diels-Alder Reactions Under Microwave Irradiation -- 2.22.2 Diels-Alder Reactions in Aqueous Phase -- 2.22.3 Diels-Alder Reactions in High Temperature Water and Supercritical Water -- 2.22.4 Diels-Alder Reaction Under Sonication -- 2.22.5 Diels-Alder Reaction Using Ionic Liquids -- 2.22.6 Diels-Alder Reaction in Supercritical Carbon Dioxide -- 2.22.7 Asymmetric Diels-Alder Reactions in Water -- 2.22.8 Hetero-Diels-Alder Reactions -- 2.22.9 Intramolecular Diels-Alder Reaction -- 2.23 Fischer-Indole Synthesis -- 2.23.1 Fischer-Indole Synthesis in Dry Conditions -- 2.23.2 Fischer-Indole Synthesis in Water -- 2.24 Friedel-Crafts Reaction -- 2.24.1 Friedel-Crafts Alkylation -- 2.24.2 Friedel-Crafts Acylation -- 2.25 Friedlander Synthesis -- 2.25.1 Friedlander Synthesis Under Microwave Irradiation -- 2.26 Fries Rearrangement -- 2.26.1 Photo-Fries Rearrangement [237, 238] -- 2.26.2 Fries-Rearrangement Under Microwave Irradiation [240] -- 2.27 Graebe-Ullman Synthesis -- 2.27.1 Graebe-Ullman Synthesis Under Microwave Irradiation -- 2.28 Grignard Reaction.
  • 2.28.1 Grignard Reaction Under Sonication -- 2.28.2 Grignard Reaction in Solid State -- 2.28.3 Applications -- 2.29 Heck Reaction -- 2.29.1 Heck Reaction in Aqueous Phase -- 2.29.2 Heck Reaction in Supercritical Carbon Dioxide -- 2.29.3 Heck Reaction in Ionic Liquids -- 2.29.4 Heck Reaction in Polyethylene Glycol -- 2.29.5 Heck Reaction Using Fluorous Phase Technique -- 2.30 Hantzsch Pyridine Synthesis -- 2.30.1 Hantzsch Pyridine Synthesis Under Microwave Irradiation -- 2.31 Henry Reaction -- 2.31.1 Henry Reaction Under Microwave Irradiation -- 2.32 Hiyama Reaction [273] -- 2.33 Hofmann Elimination [275] -- 2.33.1 Hoffmann Elimination Under Microwave Irradiation -- 2.34 Knoevenagel Condensation -- 2.34.1 Knoevenagel Reaction in Water -- 2.34.2 Knoevenagel Condensation Under Microwave Irradiation -- 2.34.3 Knoevenagel Condensation in Solid State -- 2.34.4 Knoevenagel Condensation in Ionic Liquids -- 2.34.5 Applications -- 2.35 Kolbe-Schmitt Reaction -- 2.35.1 Kolbe-Schmitt Reaction in SC CO2 -- 2.36 Mannich Reaction [295] -- 2.36.1 Mannich Reaction in Water -- 2.36.2 Mannich-Type Reactions -- 2.37 Meyer-Schuster Rearrangement [302] -- 2.38 Michael Addition -- 2.38.1 Michael Addition Under PTC Conditions -- 2.38.2 Michael Addition in Aqueous Medium -- 2.38.3 Michael Addition in Solid State -- 2.38.4 Michael Addition in Ionic Liquids -- 2.38.5 Aza-Michael Reaction -- 2.38.6 Applications -- 2.39 Mukaiyama Reaction -- 2.39.1 Mukaiyama Reaction in Aqueous Phase -- 2.40 Pechmann Condensation -- 2.40.1 Microwave-Promoted Pechmann Reaction -- 2.40.2 Pechmann Condensation in the Presence of Ionic Liquids -- 2.41 Paterno-Büchi Reaction -- 2.42 Pauson-Khand Reaction [332] -- 2.43 Pinacol Coupling [333] -- 2.44 Pinacol-Pinacolone Rearrangement -- 2.44.1 Pinacol-Pinacolone Rearrangement in Water Using Microwave Irradiation.
  • 2.44.2 Pinacol-Pinacolone Rearrangement on Irradiation with Microwaves in Solid State -- 2.45 Prins Reaction [344] -- 2.46 Reformatsky Reaction -- 2.46.1 Reformatsky Reaction Using Sonication -- 2.46.2 Reformatsky Reaction in Solid State -- 2.46.3 Applications (Scheme 2.341) -- 2.47 Rupe Rearrangement [353] -- 2.48 Simmons-Smith Reaction [355] -- 2.48.1 Simmons-Smith Reaction Under Sonication -- 2.48.2 Applications -- 2.49 Sonogashira Reaction [368] -- 2.49.1 Sonogashira Reaction in Water -- 2.49.2 Sonogashira Reaction in Ionic Liquids -- 2.50 Stetter Reaction [374] -- 2.51 Stille Coupling Reaction [375] -- 2.51.1 Stille Coupling Reaction in Water -- 2.51.2 Stille Coupling Reaction in SC-CO2 -- 2.51.3 Stille Coupling Reaction in Ionic Liquids -- 2.51.4 Stille Coupling Using Fluorous Phase Technique -- 2.52 Strecker Synthesis [382] -- 2.52.1 Strecker Synthesis Under Sonication -- 2.52.2 Applications (Scheme 2.373) -- 2.53 Suzuki Coupling Reaction -- 2.53.1 Suzuki Coupling Reaction in Aqueous Medium -- 2.53.2 Suzuki Coupling Reaction in Ionic Liquids -- 2.53.3 Suzuki Coupling Reaction in Polyethylene Glycol (PEG) -- 2.54 Ullmann Reaction [402] -- 2.54.1 Ullmann Coupling Under Sonication -- 2.54.2 Ullmann-Type Coupling in Water -- 2.54.3 Applications (Scheme 2.392) -- 2.55 Weiss-Cook Reaction [419] -- 2.56 Williamsons Ether Synthesis [421] -- 2.56.1 Phase Transfer Catalysed Williamson Ether Synthesis -- 2.56.2 Applications (Scheme 2.397) -- 2.57 Wittig Reaction [430] -- 2.57.1 The Wittig Reaction with Aqueous Sodium Hydroxide -- 2.57.2 Wittig Reaction in Solid Phase -- 2.57.3 Wittig Reaction in Ionic Liquids -- 2.57.4 Applications -- 2.58 Wurtz Reaction -- 2.58.1 Wurtz Reaction Under Sonication -- 2.58.2 Wurtz Reaction in Water -- 2.58.3 Applications -- References -- 3 Green Preparation -- 3.1 Aqueous Phase Reactions.
  • 3.1.1 Hydrolysis of Methyl Salicylate with Alkali.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 3-030-58513-1
OCLC-Nummer: 1259590547
Titel-ID: 9925023577206463
Format
1 online resource (370 pages)
Schlagworte
Green chemistry