Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Biomedical innovations to combat COVID-19
Ort / Verlag
London, England : Academic Press,
Erscheinungsjahr
[2022]
Link zum Volltext
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Front Cover -- Biomedical Innovations to Combat COVID-19 -- Copyright Page -- Contents -- List of contributors -- Preface -- Acknowledgments -- 1 Basic virological aspects of SARS-CoV-2 -- 1.1 Introduction -- 1.2 Genome organization and function -- 1.2.1 Genome organization -- 1.2.2 Genome function -- 1.3 Viral entry -- 1.3.1 Virus-cell interaction -- 1.3.2 Clathrin-mediated endocytosis -- 1.4 Genome replication and translation -- 1.4.1 Replication and transcription -- 1.4.2 Translation -- 1.5 Assembly -- 1.5.1 Virus-induced cell remodeling -- 1.5.2 Virion assembly -- 1.6 Egress -- 1.6.1 A novel egress pathway -- 1.7 General aspects of the immune response to a viral infection -- 1.7.1 Type I interferon and the antiviral state -- 1.7.2 Dendritic cells -- 1.7.3 Natural killer cells -- 1.7.4 Macrophages -- 1.7.5 Cellular immune response -- 1.7.6 The humoral immune response -- 1.8 Concluding remarks -- Acknowledgments -- References -- 2 Fundamental aspects of the structural biology of coronaviruses -- 2.1 Introduction -- 2.2 The structural proteins -- 2.2.1 Envelope protein -- 2.2.2 Nucleocapsid protein -- 2.2.3 Membrane protein -- 2.2.4 Spike protein -- 2.3 The viral proteases -- 2.3.1 Main protease -- 2.3.2 Papain-like protease -- 2.4 The accessory proteins -- 2.4.1 Protein 3a -- 2.4.2 Protein 7a -- 2.4.3 Protein 8 -- 2.4.4 Protein 9b -- 2.5 Concluding remarks -- References -- 3 Introduction to the SARS-CoV-2/COVID-19 epidemiology -- 3.1 Introduction -- 3.2 Epidemiology -- 3.3 Clinical characteristics -- 3.3.1 Definition of a suspected case established by the WHO -- 3.4 Impact of COVID-19 -- 3.5 Infection in pediatrics -- 3.6 Vitamin D and COVID-19 -- 3.7 Epidemiology analysis of the SARS-CoV-2 outbreak -- 3.8 Immune response and reinfections -- 3.9 SARS-CoV-2 variants -- 3.10 Closing remarks -- References.
  • 4 Structural biology of the SARS-CoV-2 replisome: evolutionary and therapeutic implications -- 4.1 Introduction -- 4.2 Structural biology of SARS-CoV-2 -- 4.3 The SARS-CoV-2 replisome: expanding knowledge through structural biology -- 4.4 The RNA-dependent RNA polymerase -- 4.5 Nsp7 and nsp8 processivity actors -- 4.6 Nsp13 helicase -- 4.7 Nsp14 exonuclease and N7-methyltransferase -- 4.8 Nsp9 single-stranded RNA-binding protein -- 4.9 Nsp10-nsp14 and nsp16 cofactor -- 4.10 The nonenzymatic synthesis of nucleosides and their derivatives: from the prebiotic chemistry to therapeutic agents -- 4.11 On the origin and early evolution of RNA viruses and SARS-CoV-2 -- 4.12 The emergence of new infectious diseases by zoonoses -- 4.13 Conclusion -- Acknowledgments -- References -- 5 Clinical progression of patients with COVID-19: the impact of the pandemic in Latin America -- 5.1 Introduction -- 5.2 COVID-19-associated pathogenesis -- 5.2.1 The SARS-CoV-2 effect on multiple organs is associated with ACE2 expression -- 5.2.2 Underlying comorbidities and lethality -- 5.2.3 The clinical usefulness of clustering symptoms -- 5.3 COVID-19 behavior in Latin America -- 5.3.1 Viral outbreaks in Latin America -- 5.3.2 Latin America: the epicenter of COVID-19 -- 5.3.3 Underlying comorbidities in Latin America -- 5.3.4 Most common COVID-19 symptoms in Latin America -- 5.4 COVID-19 in Mexico -- 5.4.1 COVID-19 in Mexico: lethality, comorbidities and symptoms -- 5.5 Remarks -- References -- 6 Overview of the immune response against SARS-CoV-2 -- 6.1 Introduction -- 6.2 Virion structure -- 6.3 Viral cycle -- 6.3.1 Transcription and translation -- 6.3.2 Replication complex of SARS-CoV-2 -- 6.3.3 Egress -- 6.4 Protein organization of SARS-CoV-2 -- 6.4.1 Spike protein -- 6.4.2 Nucleocapsid protein -- 6.5 The innate immune response against SARS-CoV-2 -- 6.5.1 Evasion mechanisms.
  • 6.6 The immune response against SARS-CoV-2 -- 6.6.1 Humoral immunity against SARS-CoV-2 infection -- 6.7 Neutralizing antibodies -- 6.8 Immunopathology of COVID-19 -- 6.9 Conclusion -- Acknowledgment -- Conflicts of interest -- References -- 7 Viral-vectored vaccines against SARS-CoV-2 -- 7.1 Introduction -- 7.2 Development of COVID-19 vaccines -- 7.2.1 COVID-19 vaccines breaking record times to first-in-human trials -- 7.2.2 Classical versus next-generation vaccine platforms -- 7.2.2.1 Classical vaccine platforms -- 7.2.2.2 Next-generation vaccine platforms -- 7.2.3 COVID-19 vaccine pipelines in clinical evaluation and viral-vectored vaccines -- 7.2.4 Leading viral-vectored vaccine candidates in Phase III trial -- 7.3 Concluding remarks -- Acknowledgment -- References -- 8 RNA-based vaccines against SARS-CoV-2 -- 8.1 Introduction -- 8.2 Principles of mRNA vaccines -- 8.3 Liposomes as vaccine delivery vehicles -- 8.3.1 Synthesis of liposomes -- 8.3.2 Modification of liposomes -- 8.4 The mRNA-1273 vaccine developed by Moderna Inc -- 8.4.1 SARS-CoV-2-S-2P mRNA synthesis and lipid nanoparticle formulation -- 8.4.2 Preclinical trial: mouse studies -- 8.4.3 Phase I -- 8.4.4 Preclinical trial: nonhuman primates -- 8.4.5 Phase I: older adults -- 8.4.6 Phase III -- 8.5 BNT162b1 and BNT162b2 vaccines developed by Pfizer and BioNTech -- 8.5.1 Preclinical trial -- 8.5.2 Phase I/II -- 8.5.2.1 German trial (NCT04380701, EudraCT:2020-001038-36) -- 8.5.3 Phase I trial including older adults and BNT162b2 -- 8.5.3.1 ClinicalTrials.gov identifier, NCT04368728 -- 8.5.4 Decision between the two vaccine candidates BNT162 -- 8.5.5 Phase II/III: BNT162b2 -- 8.6 CVnCoV vaccine developed by CureVac -- 8.6.1 Preclinical trials -- 8.6.2 Mice -- 8.6.3 Syrian hamster -- 8.6.4 Rhesus macaques -- 8.6.5 Phase I -- 8.7 Concluding remarks and perspectives -- References.
  • 9 Particulate vaccines against SARS-CoV-2 -- 9.1 Introduction -- 9.1.1 The COVID-19 pandemic -- 9.1.2 A severe contagious disease -- 9.1.3 Characteristics of SARS-CoV-2 -- 9.2 Vaccines in development -- 9.2.1 Vaccines against SARS-CoV-2 -- 9.2.2 Vaccines in clinical trials -- 9.2.3 On the vaccines under development -- 9.3 Particulate vaccines -- 9.3.1 Definitions and existing reports -- 9.3.2 Benefits of nanovaccines and considerations -- 9.4 Vaccines based on lipid nanoparticles -- 9.5 Inorganic nanoparticles as carriers -- 9.5.1 Composition and synthesis -- 9.5.2 Gold, silver, and iron oxide nanoparticles -- 9.6 Nanovaccines against SARS-CoV-2 -- 9.7 Concluding remarks -- References -- 10 Virus-like particle-based vaccines against SARS-CoV-2 -- 10.1 Introduction -- 10.2 Potential of VLP-based vaccines -- 10.3 HBV vaccines -- 10.4 HEV vaccines -- 10.5 HPV vaccines -- 10.6 Precedents of VLP-based vaccines against human coronaviruses -- 10.7 VLP-based vaccines against SARS-CoV-2 -- 10.8 Concluding remarks -- Funding -- References -- 11 Innovative recombinant protein-based vaccines against SARS-CoV-2 -- 11.1 Introduction -- 11.2 SARS-CoV, the vaccines proposed before COVID-19 -- 11.3 Current vaccines proposed for SARS-CoV-2 -- 11.4 Vaccine platforms implemented for SARS-CoV-2 -- 11.5 SARS-CoV-2 protein-based vaccines -- 11.6 The rational design of the antigen by bioinformatics strategies -- 11.7 Current vaccine candidates based on recombinant proteins -- 11.8 The NVX-CoV2373 vaccine -- 11.9 Preclinical trials -- 11.9.1 Mouse studies -- 11.10 Nonhuman primates studies -- 11.10.1 Olive baboons -- 11.10.2 Cynomolgus macaques -- 11.11 Clinical trials -- 11.12 The VAT00002 vaccine -- 11.12.1 Clinical trial -- 11.13 The ZF2001 vaccine -- 11.13.1 Clinical trial -- 11.14 Efforts to develop a vaccine in Mexico -- 11.15 Concluding remarks and perspectives.
  • References -- 12 SARS-CoV-2 vaccines: current trends and prospects of developing plant-derived vaccines -- 12.1 Introduction -- 12.2 Coronavirus overview -- 12.3 Clinical manifestations -- 12.4 Vaccine candidates for COVID-19 -- 12.5 Plant molecular farming -- 12.5.1 Plant-based vaccine scenario -- 12.5.2 Possibilities of developing of plant-derived COVID-19 vaccines -- 12.5.2.1 Subunit vaccines -- 12.5.2.2 Virus-like particles vaccines -- 12.5.3 Immune complexes -- 12.5.4 Oral vaccines -- 12.6 Prospects -- 12.7 Concluding remarks -- Acknowledgment -- Conflict of interest -- Author contributions -- References -- Further reading -- 13 Nanobodies targeting SARS-CoV-2 -- 13.1 Introduction -- 13.2 The concept of a "classic antibody" -- 13.3 The "newly" described antibodies -- 13.4 The VHH or nanobodies -- 13.4.1 Production of Nbs, synthetic libraries -- 13.4.2 Structure of nanobodies -- 13.5 Nanobodies as biotechnological tools -- 13.6 Nanobodies against SARS-CoV-2 -- 13.7 Limitations of the Nbs technology -- 13.8 Concluding remarks -- References -- 14 2D materials and van der Waals heterostructures platforms for advanced sensing of COVID-19 -- 14.1 Introduction -- 14.2 Graphene, 2DMs, and vdW heterostructures -- 14.3 2DMs devices -- 14.4 Internet of things (IoT) -- 14.5 2DMs advances sensing of COVID-19 -- 14.6 Perspective and conclusions -- Acknowledgment -- References -- 15 Microfluidic-based biosensor for SARS-CoV-2 antibodies -- 15.1 Introduction -- 15.2 Materials -- 15.2.1 Molecule as bioreceptor -- 15.2.2 Low-frequency QCMs -- 15.2.3 Immobilization and immunoassay flow-cell -- 15.2.4 Fluidic module -- 15.3 Methods -- 15.3.1 Read-out module -- 15.3.2 Data acquisition and user interface -- 15.3.3 Functionalization and immobilization -- 15.3.4 Direct immunoassay against SARS-CoV-2 antibodies -- 15.3.5 Analytical parameters.
  • 15.3.5.1 Dose-response protocol.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 0-323-90249-9
OCLC-Nummer: 1281982174
Titel-ID: 9925023230106463
Format
1 online resource (411 pages)
Schlagworte
COVID-19 (Disease)