Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 3 von 3

Details

Autor(en) / Beteiligte
Titel
Current trends and future developments on (bio-) membranes : techniques of computational fluid dynamic (CFD) for development of membrane technology
Ort / Verlag
Amsterdam, Netherlands ; : Elsevier,
Erscheinungsjahr
[2022]
Link zum Volltext
Beschreibungen/Notizen
  • Front Cover -- Current Trends and Future Developments on (Bio-) Membranes -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Introduction on principle of computational fluid dynamics -- 1.1 What is computational fluid dynamics? -- 1.2 Applications of computational fluid dynamics -- 1.3 Main stages of computational fluid dynamics modeling -- 1.4 Solution algorithms in computational fluid dynamics -- 1.5 Commercial and noncommercial software for computational fluid dynamics -- 1.6 Features of computational fluid dynamics schemes -- 1.6.1 Order of accuracy -- 1.6.1.1 Main categories for an finite difference scheme -- 1.6.2 Consistency -- 1.6.3 Stability -- 1.6.4 Convergence -- 1.7 Stability analysis -- 1.7.1 Matrix method -- 1.7.2 Fourier (von Neumann) analysis -- 1.8 Temporal discretization -- 1.9 Initial and boundary conditions -- 1.9.1 Physical boundary conditions -- 1.9.2 Numerical boundary conditions -- 1.9.3 Number of physical and numerical boundary conditions at a boundary -- 1.10 Governing equations in the general coordinate system -- 1.11 Finite volume method -- 1.11.1 Discretization in finite volume method -- 1.11.2 Properties of finite volume schemes -- 1.11.2.1 Conservativeness -- 1.11.2.2 Boundedness -- 1.11.2.3 Transportiveness -- 1.11.3 Mesh (grid) generation in finite volume method -- 1.11.3.1 Structured mesh -- 1.11.3.2 Unstructured mesh -- 1.11.3.3 Hybrid mesh -- 1.12 Finite element method -- 1.12.1 Preliminary -- 1.12.2 Residual minimization methods -- 1.12.2.1 Collocation method -- 1.12.2.2 Subdomain method -- 1.12.2.3 Galerkin method -- 1.12.3 Convergence in finite element method -- 1.12.3.1 h-refinement -- 1.12.3.2 p-refinement -- 1.13 Solution of systems of linear equations -- 1.13.1 Direct solvers -- 1.13.2 Indirect solvers -- 1.14 Conclusions and future trends -- List of abbreviations -- Nomenclature.
  • Superscripts -- Subscripts -- References -- 2 Application of computational fluid dynamics technique in microfiltration/ultrafiltration processes -- 2.1 Introduction -- 2.2 State of art -- 2.2.1 Fouling and concentration polarization -- 2.2.2 Design -- 2.2.3 Hydrodynamics -- 2.3 Fundamentals of computational fluid dynamics modeling approach -- 2.3.1 Geometry dimensionality -- 2.3.2 Boundary conditions -- 2.3.3 Laminar or turbulence modeling -- 2.3.4 Multiphase flow modeling -- 2.3.4.1 Eulerian-Eulerian framework -- 2.3.4.2 Eulerian-Lagrangian framework -- 2.3.4.3 Interphase tracking method: volume-of-fluid (VOF) model -- 2.3.4.4 Interfacial forces -- 2.4 Conclusion and future trends -- List of abbreviations -- Nomenclature -- Greek symbols -- Subscripts -- References -- 3 Application of computational fluid dynamics technique in reverse osmosis/nanofiltration processes -- 3.1 Introduction -- 3.2 Governing effects in membrane filtration processes -- 3.3 Governing flow model -- 3.4 Computational fluid dynamics model setup -- 3.5 Model execution and data analysis -- 3.6 Conclusion -- List of abbreviations -- Nomenclature -- References -- 4 Application of computational fluid dynamics technique in electrodialysis/reverse electrodialysis processes -- 4.1 Introduction -- 4.1.1 Electrodialysis/reverse electrodialysis working principle, stack design, and operating features -- 4.1.2 Main aspects related to flow and mass transfer -- 4.1.2.1 Spacers and profiled membranes -- 4.2 Modeling and methods -- 4.2.1 Governing equations and physical properties -- 4.2.1.1 Treatment of periodicity for unit cell simulations -- 4.2.2 Computational domains and boundary conditions -- 4.2.2.1 Impermeable wall boundary condition -- 4.2.3 Definitions for flow and mass transfer characterization -- 4.3 Results and discussion -- 4.3.1 Flow and mass transfer in the channels.
  • 4.3.1.1 Spacer-filled channels -- 4.3.1.2 Membrane profile-filled channels -- 4.3.2 Fluid dynamics in entire channels and manifolds -- 4.3.3 Multi-physical modeling -- 4.3.4 Direct numerical simulation of electroconvection -- 4.3.4.1 No forced flow -- 4.3.4.2 With forced flow -- 4.4 Conclusions and future trends -- List of abbreviations -- List of symbols -- Latin letters -- Greek letters -- Subscripts -- References -- 5 Application of computational fluid dynamics technique in membrane distillation processes -- 5.1 Introduction -- 5.1.1 Working principle -- 5.1.2 Benefits and limitations -- 5.1.3 The role of computational fluid dynamics in membrane distillation development -- 5.1.4 Transport phenomena: role of heat transfer -- 5.2 Models and methods -- 5.2.1 Definitions -- 5.2.2 Governing equations and periodicity treatment -- 5.2.3 Computational domain, finite volume grids, and grid independence analysis -- 5.2.4 Boundary conditions -- 5.2.5 Treatment of turbulence -- 5.2.6 Symmetries with respect to the flow attack angle θ -- 5.3 Results and discussion -- 5.3.1 Validation against literature and thermochromic liquid crystals experimental results -- 5.3.1.1 Woven spacers-pressure drop -- 5.3.1.2 Woven spacers-heat transfer -- 5.3.1.3 Overlapped spacers-local Nusselt number distribution -- 5.3.2 Flow and temperature fields predicted by numerical simulations -- 5.3.3 Complex influence of the parameters (Re, θ, P/H, woven vs overlapped) -- 5.3.3.1 Influence of the Reynolds number -- 5.3.3.2 Influence of the flow attack angle θ -- 5.3.3.3 Influence of the pitch-to-height ratio -- 5.3.3.4 Overlapped versus woven spacers -- 5.3.4 Effect of the thermal boundary conditions and two-side versus one-side heat transfer -- 5.3.5 Difference between &lt -- Nu&gt -- and Num -- 5.3.6 Effect of the spacer's thermal conductivity.
  • 5.3.7 Comparison and choice of turbulence models -- 5.4 Conclusions and future trends -- List of abbreviations -- Nomenclature -- Latin letters -- Greek letters -- Averages -- References -- 6 Application of computational fluid dynamics technique in dialysis processes -- 6.1 Introduction -- 6.2 Dialysis -- 6.3 Principles behind dialysis -- 6.4 Membranes used in dialysis -- 6.5 Different types of dialyzers -- 6.6 The fundamental principles of mass transfer in dialysis -- 6.7 Basic applications of dialysis -- 6.7.1 Hemodialysis (artificial kidney) -- 6.7.2 Blood oxygenators (artificial lungs) -- 6.7.3 Removal of alcohol from beer -- 6.8 Application of computational fluid dynamics in dialysis processes -- 6.8.1 Diffusion dialysis -- 6.8.2 Donnan dialysis -- 6.8.3 Neutralization dialysis and piezodialysis -- 6.8.4 Hemodialysis -- 6.9 Conclusions and trends -- List of abbreviations -- Nomenclature -- Greek letters -- References -- 7 Application of computational fluid dynamics technique in pervaporation processes -- 7.1 Introduction -- 7.1.1 Pervaporation applications -- 7.1.2 Pervaporation driving force -- 7.1.3 Pervaporation membrane -- 7.1.3.1 Polymeric membranes -- 7.1.3.2 Inorganic membranes -- 7.1.3.3 Composite membranes -- 7.1.4 Pervaporation design aspects -- 7.1.5 Species transport mechanism in pervaporation -- 7.2 Computational fluid dynamics simulation -- 7.2.1 Governing equations -- 7.2.2 Simplifying assumptions -- 7.2.3 Boundary conditions -- 7.3 Concluding remarks and future trends -- List of abbreviations -- Nomenclature -- Greek letters -- References -- 8 Application of computational fluid dynamics technique in processes of gas membrane separation -- 8.1 Introduction -- 8.2 Computational fluid dynamics simulation for the membrane gas separation -- 8.3 Mathematical modeling -- 8.3.1 Modeling assumptions -- 3.1.1 Thermal considerations.
  • 3.1.2 Flow pattern -- 3.1.3 Physical parameters -- 3.1.4 Gas phase -- 3.1.5 Membrane properties -- 3.1.6 Reaction zone -- 8.3.2 Mathematical modeling equations -- 8.3.3 Boundary conditions -- 8.3.4 Spatial dimension -- 8.4 Numerical simulation and computational approach -- 8.5 Conclusion and future trend -- List of abbreviations -- Nomenclature -- Greek letters -- References -- 9 Application of computational fluid dynamics technique in membrane contactor systems -- 9.1 Introduction -- 9.2 Literature review of the application of CFD methods in HFMC -- 9.3 CFD modeling of fluid flow and mass transfer in HFMC -- 9.3.1 Case study -- 9.3.2 Computational domain -- 9.3.3 CFD equations -- 9.3.3.1 Tube side equations (inside the fibers) -- 9.3.3.2 Membrane equations -- 9.3.3.3 Shell side equations -- 9.4 Results of experiments and CFD models -- 9.5 Conclusions and future trends -- List of abbreviations -- Nomenclature -- Greek letters -- Subscripts -- References -- 10 Application of computational fluid dynamics technique in membrane reactor systems -- 10.1 Introduction -- 10.2 Designs of membrane reactors -- 10.3 Modeling of membrane reactor systems -- 10.3.1 Modeling based on mass balance method -- 10.3.1.1 Reaction zone models -- 10.3.1.2 Permeation zone models -- 10.3.1.3 Boundary conditions -- 10.3.2 Modeling based on artificial neural network method -- 10.3.3 Modeling based on computational fluid dynamic method -- 10.4 The computational fluid dynamic studies on membrane reactor systems -- 10.4.1 Computational fluid dynamic studies on gas-phase processes -- 10.4.2 Computational fluid dynamic studies on liquid-phase processes -- 10.5 Conclusion and future trends -- List of abbreviations -- Nomenclature -- Greek letters -- References -- 11 Application of computational fluid dynamics technique in membrane bioreactor systems -- 11.1 Introduction.
  • 11.2 Design of the membrane bioreactor.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 0-12-822307-3
Titel-ID: 9925022668106463
Format
1 online resource (403 pages)
Schlagworte
Hydrogen as fuel