Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Methods in sustainability science : assessment, prioritization, improvement, design and optimization
Ort / Verlag
Amsterdam, Netherlands : Elsevier,
Erscheinungsjahr
2021
Link zum Volltext
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- 1 - Methods in sustainability science -- 1.1 Introduction -- 1.2 Sustainability assessment and analysis -- 1.2.1 Sustainability metrics/indicators -- 1.2.2 Sustainability analysis tools -- 1.2.3 Material flow analysis -- 1.3 Sustainability ranking and prioritization -- 1.4 Sustainability enhancement and improvement -- 1.5 Sustainability design and optimization -- 1.6 Conclusion -- Acknowledgments -- References -- 2 - Business contributions to sustainable development goals -- 2.1 Introduction -- 2.2 Literature review -- 2.2.1 Sustainable development goals (SDGs) -- 2.2.2 Sustainability reports -- 2.3 Materials and methods -- 2.4 Discussion -- 2.4.1 SDGs disclosures based on industrial sector -- 2.4.2 SDGs disclosures based on goals -- 2.5 Conclusion -- References -- 3 - Sustainability assessment: Metrics and methods -- 3.1 Introduction -- 3.2 Need of sustainability assessment -- 3.2.1 Steady-state economy -- 3.2.2 Circular economy -- 3.2.3 Ecological footprints -- 3.3 Various methods of sustainability assessment -- 3.3.1 Life-cycle assessment -- 3.3.2 Socioeconomic impact assessment -- 3.3.3 Strategic environmental assessment -- 3.3.4 Cost-benefit analysis -- 3.3.5 Travel cost analysis -- 3.3.6 Social impact assessment -- 3.3.7 Contingent valuation method -- 3.3.8 Hedonic pricing method -- 3.3.9 Multicriteria analysis -- 3.3.10 Material intensity per service unit -- 3.3.11 Analytic network process -- 3.3.12 Environmental and sustainability rating systems -- 3.4 Comparison of sustainability assessment methods -- 3.5 Conclusion -- References -- 4 - Sustainability assessment of energy systems: Indicators, methods, and applications -- 4.1 Introduction -- 4.1.1 Principle of sustainability.
  • 4.1.2 Energy system and sustainability -- 4.2 Sustainability indicators -- 4.3 Sustainability assessment methods -- 4.3.1 Multiattribute Value Theory (MAVT) -- 4.3.2 Weighted Sum Method (WSM) -- 4.3.3 Analytic Hierarchy Process (AHP) -- 4.3.4 Weighted Product Method (WPM) -- 4.3.5 Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) -- 4.3.6 Preference Ranking Organization METHod for Enrichment of Evaluations (PROMETHEE) -- 4.3.7 ELimination Et Coix Traduisant la REalite (ELECTRE) -- 4.3.8 VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) -- 4.3.9 COmplex PRoportional ASsessment (COPRAS) -- 4.3.10 Other methods -- 4.4 Sustainability assessment: an application of COPRAS method -- 4.4.1 Results and discussion -- 4.5 Conclusion -- Acknowledgement -- References -- 5 - Sustainability measurement Evolution and methods -- 5.1 Why measuring sustainability matters in the current business landscape -- 5.2 The evolution of sustainability measurement research -- 5.2.1 Literature intellectual structure -- 5.2.2 Sustainability measurement: a broken compass -- 5.2.3 Contribution to performance measurement and the management literature -- 5.3 Methods and tools: the path toward sustainability measurement -- 5.3.1 Sustainability core issues and stakeholder mapping -- 5.3.2 Sustainability performance measurement system -- 5.3.3 Sustainability reporting -- 5.4 The future of sustainability measurement -- References -- 6 - Industrial sustainability performance measurement system-challenges for the development -- 6.1 Industrial sustainability -- 6.2 Industrial sustainability performance measurement -- 6.2.1 Why do firms measure industrial sustainability-related performance? -- 6.2.2 How do firms measure industrial sustainability-related performance? -- 6.2.3 Focus of the present chapter.
  • 6.3 Industrial sustainability PMS-toward an effective development -- 6.3.1 Usefulness to internal and external stakeholders -- 6.3.2 Completeness and balance according to a holistic perspective on industrial sustainability -- 6.3.3 Usability and manageability -- 6.3.4 Selection of indicators -- 6.3.5 Context of application -- 6.4 A scalable framework for measuring industrial sustainability ­performance -- 6.5 Concluding remarks and future perspectives -- References -- 7 - Life cycle assessment: methods, limitations, and illustrations -- 7.1 Introduction to the life cycle assessment (LCA) methodology -- 7.1.1 First phase -- 7.1.2 Second phase -- 7.1.3 Third phase -- 7.1.4 Fourth phase -- 7.2 International standards -- 7.3 Applications -- 7.4 Limitations -- References -- 8 - Life cycle assessment for better sustainability: methodological framework and application -- 8.1 Introduction -- 8.2 LCA methodology -- 8.3 Important aspects of LCA methodology -- 8.3.1 Goal setting and functional unit -- 8.3.2 Assigning environmental burdens -- 8.3.3 Credit for avoided burden -- 8.3.4 Consequential LCA -- 8.3.5 Inventory data availability and transparency -- 8.3.6 Identifying data uncertainty -- 8.3.7 Distinguishing risk assessment -- 8.3.8 Reporting quantitative and qualitative information -- 8.3.9 LCA does not always state a "winner" -- 8.3.10 LCA is an iterative process -- 8.4 Sustainability approach -- 8.5 Application of LCA -- 8.5.1 Sustainable cities -- 8.5.2 Municipal solid waste management -- 8.5.3 Wastewater treatment -- 8.5.4 Solar power -- 8.5.5 Agricultural strategic development planning -- 8.5.6 Biofuels -- 8.6 LCA limitations and their probable solutions -- 8.7 Conclusion -- References -- 9 - Life cycle sustainability dashboard and communication strategies of scientific data for sustainable development.
  • 9.1 Introduction -- 9.2 Ethical definition of sustainable development and communication strategies -- 9.3 Life cycle sustainability -- 9.3.1 Data report and illustration of results -- 9.4 The dashboard of sustainability, a tool for sharing results -- 9.5 The life cycle sustainability dashboard -- 9.6 Other sustainability tools and communication strategies -- 9.7 Conclusions -- References -- 10 - Multicriteria decision-making methods for results interpretation of life cycle assessment -- 10.1 Introduction -- 10.2 An overview of the multicriteria approach -- 10.2.1 The MCDM basic process -- 10.2.2 MCDM methods classification -- 10.2.3 A brief description of the main MCDM methods -- 10.2.3.1 Analytic Hierarchy Process -- 10.2.3.2 Technique for order preference by similarity to ideal solution -- 10.2.3.3 Preference Ranking Organization Method for Enrichment Evaluation -- 10.2.3.4 Elimination and Choice Expressing Reality -- 10.3 LCA and multicriteria methods integration -- 10.3.1 Selection of MSWM option -- 10.3.2 Selection of sewer pipe materials -- 10.3.3 Selection of poultry production systems -- 10.3.4 Urban transport systems comparison -- 10.4 Discussion -- 10.5 Concluding remarks -- References -- 11 - Composite sustainability indices (CSI) -- a robust tool for the sustainability measurement of chemical processes from " ... -- 11.1 Introduction -- 11.2 The CSI methodology and applications -- 11.2.1 WAste Reduction algorithm and potential environment impact balance -- 11.2.2 Risk assessment index -- 11.2.3 Energy impact index -- 11.3 Discussion -- 11.4 Conclusions -- Reference -- 12 - Sustainability assessment using the ELECTRE TRI multicriteria sorting method -- 12.1 Introduction -- 12.2 ELECTRE TRI in the MCDA panorama -- 12.3 ELECTRE TRI in detail -- 12.3.1 Origins and purpose -- 12.3.2 Classification rules.
  • 12.3.3 Valued outranking relations -- 12.3.4 Other variants -- 12.4 An illustrative example -- 12.5 Setting the parameter values -- 12.6 Conclusion -- Acknowledgments -- References -- 13 - Sustainability improvement opportunities for an industrial complex -- 13.1 Introduction -- 13.2 Methodology -- 13.2.1 Design of the various systems and utilities -- 13.2.1.1 Rooftop solar photovoltaic system -- 13.2.1.2 Rainwater harvesting system -- 13.2.1.3 Solar day-lighting system -- 13.2.1.4 Turbo ventilators -- 13.2.1.5 Chilled water air conditioning system -- 13.2.2 Ecological footprint (EF) -- 13.3 Case study -- 13.3.1 Survey of MNNIT Industrial Complex -- 13.3.2 Data collection -- 13.4 Results and discussion -- 13.4.1 Rooftop solar PV system -- 13.4.2 Rainwater harvesting system -- 13.4.3 Solar day-lighting System -- 13.4.4 Turbo ventilators -- 13.4.5 Chilled water air conditioning system -- 13.4.5.1 Comparative assessment of proposed systems -- 13.5 Scope of future work -- 13.6 Conclusions -- Short Biography of the Authors -- References -- 14 - Coupled life cycle assessment and data envelopment analysis to optimize energy consumption and mitigate environmental ... -- 14.1 Introduction -- 14.2 Data collection -- 14.3 Energy in agriculture -- 14.3.1 Energy analysis -- 14.3.2 Energy indices and forms -- 14.4 Life cycle assessment -- 14.4.1 Scope and goal definition -- 14.4.2 Life cycle inventory -- 14.4.3 Life cycle impact assessment -- 14.4.3.1 Normalization -- 14.4.3.2 Weighting -- 14.5 Data envelopment analysis -- 14.6 Integration of LCA and DEA -- 14.7 Result analysis -- 14.7.1 Energy use pattern -- 14.7.2 Environmental life cycle analysis -- 14.7.3 Energy optimization by DEA -- 14.7.4 Mitigation of environmental impacts by DEA + LCA -- 14.8 Conclusions -- References.
  • 15 - Lean integrated management system for sustainability improvement: An integrated system of tools and metrics for susta ...
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 0-12-824240-X
Titel-ID: 9925022608406463
Format
1 online resource (446 pages)
Schlagworte
Sustainability