Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 14
Recommendation engines
The MIT Press essential knowledge series
[2020]
Signatur: KNZZ4492

Details

Autor(en) / Beteiligte
Titel
Recommendation engines
Ist Teil von
  • The MIT Press essential knowledge series
Ort / Verlag
Cambridge, Massachusetts : The MIT Press
Erscheinungsjahr
[2020]
Link zu anderen Inhalten
Beschreibungen/Notizen
  • "How does Netflix know just what to suggest you watch next? How does Amazon determine what a "customer like you" has also purchased? The answer is recommender systems, the technological concept that lies at the heart of most of the successful companies in the digital economy. Michael Schrage starts with the origins of recommender systems, which go back further than you think (see: the Oracle at Delphi for one of history's earliest recommenders), and a history of the first companies to harness recommendations. He then discusses the technology behind how recommenders work: the AI and machine learning algorithms that power these recommender platforms. Next he discusses the role of user experience, and how recommender systems are designed, and how design choices function as nudges to make certain recommendations more salient than others. He explores three case studies: Spotify, Bytedance, and Stitch Fix, looking at how recommenders can create new business solutions and how algorithms can go beyond curation to content creation. The concluding chapter on the future of recommender systems is perhaps the most enlightening. Moving away from technology and business, Schrage embraces the philosophical, probing the role of free will in a world mediated by recommender systems (a recommendation inherently offers a choice; without the element of choice, any digital manipulation of our preferences cannot truly be called a "recommendation"), and exploring the role of recommender systems as a means of improving the self. In the vein of Free Will, this book presents the essential information while revealing the author's point of view. Schrage wants to push our understanding of recommender systems beyond the technological, to understand what societal role they play and what opportunities they offer now and in the future"--
Sprache
Englisch
Identifikatoren
ISBN: 9780262539074
Titel-ID: 990023674880106463
Format
xx, 275 Seiten; Illustrationen; 18 cm
Systemstelle
KNZZ
Schlagworte
Neue Medien, Empfehlungssystem, Big Data, Algorithmus, Personalisierung, Netflix Inc, Amazon.com Inc, Spotify, Maschinelles Lernen, Einfluss

Lade weitere Informationen...