Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 35

Details

Autor(en) / Beteiligte
Titel
De Rham Cohomology of Differential Modules on Algebraic Varieties [Elektronische Ressource]
Ist Teil von
  • Progress in Mathematics : 189
Ort / Verlag
Basel : Birkhäuser Basel
Erscheinungsjahr
2001
Link zu anderen Inhalten
Beschreibungen/Notizen
  • This is a study of algebraic differential modules in several variables, and of some of their relations with analytic differential modules. Let us explain its source. The idea of computing the cohomology of a manifold, in particular its Betti numbers, by means of differential forms goes back to E. Cartan and G. De Rham. In the case of a smooth complex algebraic variety X, there are three variants: i) using the De Rham complex of algebraic differential forms on X, ii) using the De Rham complex of holomorphic differential forms on the analytic an manifold X underlying X, iii) using the De Rham complex of Coo complex differential forms on the differentiable manifold Xdlf underlying Xan. These variants tum out to be equivalent. Namely, one has canonical isomorphisms of hypercohomology: While the second isomorphism is a simple sheaf-theoretic consequence of the Poincare lemma, which identifies both vector spaces with the complex cohomology H (XtoP, C) of the topological space underlying X, the first isomorphism is a deeper result of A. Grothendieck, which shows in particular that the Betti numbers can be computed algebraically. This result has been generalized by P. Deligne to the case of nonconstant coefficients: for any algebraic vector bundle .M on X endowed with an integrable regular connection, one has canonical isomorphisms The notion of regular connection is a higher dimensional generalization of the classical notion of fuchsian differential equations (only regular singularities)
Sprache
Englisch
Identifikatoren
ISBN: 9783034883368, 9783034895224
DOI: 10.1007/978-3-0348-8336-8
OCLC-Nummer: 879624552, 879624552
Titel-ID: 990018258320106463
Format
VII, 214 p
Schlagworte
Mathematics, Geometry