Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Prediction of Flow Stress and Characterizing the Deformation Mechanism of As‐Extruded 7005 Aluminum Alloy
Ist Teil von
  • Advanced engineering materials, 2024-06, Vol.26 (11), p.n/a
Erscheinungsjahr
2024
Link zum Volltext
Quelle
Wiley Online Library Journals Frontfile Complete
Beschreibungen/Notizen
  • This study explores isothermal hot compression of the as‐extruded 7005 aluminum alloy within a temperature range of 573–823 K, with strain rates from 0.001 to 1 s−1 and a strain of 1.2. Three constitutive equations, employing hyperbolic sine, power law, and exponential functions, were formulated and compared to predict rheological peak stress accuracy and applicability. The results indicate that the hyperbolic sine function is suitable across all stress levels, the power law function for low stress (<56 MPa), and the exponential function for high stress (>56 MPa). Introducing a strain compensation function enhances hyperbolic sine function accuracy. The stress exponent (n) and activation energy (Q) decrease with increased deformation, indicating a transition in the deformation mechanism from early‐stage dislocation climb to later‐stage dislocation glide. At 773 K with strain >0.6, the presence of precipitates maintains the n value at approximately 4. Solute atoms (Zn, Mg, and Zr) and precipitates (MgZn2 and Al3Zr) impede diffusion and dislocation motion, resulting in deformation activation energies surpassing pure aluminum. Additionally, kernel average misorientation maps demonstrate that higher deformation temperatures and lower strain rates reduce internal residual stresses. Investigates hot compression of as‐extruded 7005 alloys. Three constitutive equations (hyperbolic sine, power law, and exponential) are compared to predict rheological peak stress. Adding a strain compensation function improves hyperbolic sine accuracy. Witnesses the intricate interplay between stress, strain, and deformation mechanisms. Unravels the impact of solute atoms and precipitates on stress exponent, activation energy, and residual stresses.
Sprache
Englisch
Identifikatoren
ISSN: 1438-1656
eISSN: 1527-2648
DOI: 10.1002/adem.202400081
Titel-ID: cdi_wiley_primary_10_1002_adem_202400081_ADEM202400081

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX