Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 153

Details

Autor(en) / Beteiligte
Titel
Voltage-controllable magnetic skyrmion dynamics for spiking neuron device applications
Ist Teil von
  • Chinese physics B, 2022-01, Vol.31 (1), p.18503-766
Ort / Verlag
Chinese Physical Society and IOP Publishing Ltd
Erscheinungsjahr
2022
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Voltage-controlled magnetic skyrmions have attracted special attention because they satisfy the requirements for well-controlled high-efficiency and energy saving for future skyrmion-based neuron device applications. In this work, we propose a compact leaky-integrate-fire (LIF) spiking neuron device by using the voltage-driven skyrmion dynamics in a multiferroic nanodisk structure. The skyrmion dynamics is controlled by well tailoring voltage-induced piezostrains, where the skyrmion radius can be effectively modulated by applying the piezostrain pulses. Like the biological neuron, the proposed skyrmionic neuron will accumulate a membrane potential as skyrmion radius is varied by inputting the continuous piezostrain spikes, and the skyrmion radius will return to the initial state in the absence of piezostrain. Therefore, this skyrmion radius-based membrane potential will reach a definite threshold value by the strain stimuli and then reset by removing the stimuli. Such the LIF neuronal functionality and the behaviors of the proposed skyrmionic neuron device are elucidated through the micromagnetic simulation studies. Our results may benefit the utilization of skyrmionic neuron for constructing the future energy-efficient and voltage-tunable spiking neural networks.
Sprache
Englisch
Identifikatoren
ISSN: 1674-1056
eISSN: 2058-3834
DOI: 10.1088/1674-1056/ac05b0
Titel-ID: cdi_wanfang_journals_zgwl_e202201098

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX