Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 158
Tsinghua science and technology, 2014-12, Vol.19 (6), p.596-616
2014
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Genome-Wide Interaction-Based Association of Human Diseases-A Survey
Ist Teil von
  • Tsinghua science and technology, 2014-12, Vol.19 (6), p.596-616
Ort / Verlag
Department of Computer Science, Georgia State University, Atlanta, GA 30303, USA%Department of Computer Science, College of Staten Island, Staten Island, NY 10314, USA%Central South University, Changsha 410083, China
Erscheinungsjahr
2014
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Genome-Wide Association Studies(GWASs) aim to identify genetic variants that are associated with disease by assaying and analyzing hundreds of thousands of Single Nucleotide Polymorphisms(SNPs). Although traditional single-locus statistical approaches have been standardized and led to many interesting findings, a substantial number of recent GWASs indicate that for most disorders, the individual SNPs explain only a small fraction of the genetic causes. Consequently, exploring multi-SNPs interactions in the hope of discovering more significant associations has attracted more attentions. Due to the huge search space for complicated multilocus interactions, many fast and effective methods have recently been proposed for detecting disease-associated epistatic interactions using GWAS data. In this paper, we provide a critical review and comparison of eight popular methods, i.e., BOOST, TEAM, epi Forest, EDCF, SNPHarvester, epi MODE, MECPM, and MIC, which are used for detecting gene-gene interactions among genetic loci. In views of the assumption model on the data and searching strategies, we divide the methods into seven categories. Moreover, the evaluation methodologies,including detecting powers, disease models for simulation, resources of real GWAS data, and the control of false discover rate, are elaborated as references for new approach developers. At the end of the paper, we summarize the methods and discuss the future directions in genome-wide association studies for detecting epistatic interactions.
Sprache
Englisch
Identifikatoren
ISSN: 1007-0214
eISSN: 1878-7606, 1007-0214
DOI: 10.1109/TST.2014.6961029
Titel-ID: cdi_wanfang_journals_qhdxxb_e201406005

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX