Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 32 von 210
Journal of iron and steel research, international, 2007-03, Vol.14 (2), p.20-24
2007
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Endpoint Prediction of EAF Based on Multiple Support Vector Machines
Ist Teil von
  • Journal of iron and steel research, international, 2007-03, Vol.14 (2), p.20-24
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2007
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The endpoint parameters are very important to the process of EAF steel-making, but their on-line measurement is difficult. The soft sensor technology is widely used for the prediction of endpoint parameters. Based on the analysis of the smelting process of EAF and the advantages of support vector machines, a soft sensor model for predicting the endpoint parameters was built using multiple support vector machines (MSVM). In this model, the input space was divided by subtractive clustering and a sub-model based on LS-SVM was built in each sub-space. To decrease the correlation among the sub-models and to improve the accuracy and robustness of the model, the sub- models were combined by Principal Components Regression. The accuracy of the soft sensor model is perfectly improved. The simulation result demonstrates the practicability and efficiency of the MSVM model for the endpoint prediction of EAF.
Sprache
Englisch
Identifikatoren
ISSN: 1006-706X
eISSN: 2210-3988
DOI: 10.1016/S1006-706X(07)60021-1
Titel-ID: cdi_wanfang_journals_gtyjxb_e200702004

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX