Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Adaptive Backstepping Output Feedback Control for SISO Nonlinear System Using Fuzzy Neural Networks
Ist Teil von
International journal of automation and computing, 2009-05, Vol.6 (2), p.145-153
Ort / Verlag
Heidelberg: Institute of Automation, Chinese Academy of Sciences
Erscheinungsjahr
2009
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the unknown nonlinear functions, a fuzzy- neural adaptive observer is introduced for state estimation as well as system identification. Under the framework of the backstepping design, fuzzy-neural adaptive output feedback control is constructed recursively. It is proven that the proposed fuzzy adaptive control approach guarantees the global boundedness property for all the signals, driving the tracking error to a small neighbordhood of the origin. Simulation example is included to illustrate the effectiveness of the proposed approach.