Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 50
Journal of Nuclear Medicine, 2010-03, Vol.51 (3), p.471-476
2010

Details

Autor(en) / Beteiligte
Titel
RADAR Realistic Animal Model Series for Dose Assessment
Ist Teil von
  • Journal of Nuclear Medicine, 2010-03, Vol.51 (3), p.471-476
Ort / Verlag
United States: Soc Nuclear Med
Erscheinungsjahr
2010
Link zum Volltext
Quelle
Electronic Journals Library - Freely accessible e-journals
Beschreibungen/Notizen
  • Rodent species are widely used in the testing and approval of new radiopharmaceuticals, necessitating murine phantom models. As more therapy applications are being tested in animal models, calculating accurate dose estimates for the animals themselves becomes important to explain and control potential radiation toxicity or treatment efficacy. Historically, stylized and mathematically based models have been used for establishing doses to small animals. Recently, a series of anatomically realistic human phantoms was developed using body models based on nonuniform rational B-spline. Realistic digital mouse whole-body (MOBY) and rat whole-body (ROBY) phantoms were developed on the basis of the same NURBS technology and were used in this study to facilitate dose calculations in various species of rodents. Voxel-based versions of scaled MOBY and ROBY models were used with the Vanderbilt multinode computing network (Advanced Computing Center for Research and Education), using geometry and tracking radiation transport codes to calculate specific absorbed fractions (SAFs) with internal photon and electron sources. Photon and electron SAFs were then calculated for relevant organs in all models. The SAF results were compared with values from similar studies found in reference literature. Also, the SAFs were used with standardized decay data to develop dose factors to be used in radiation dose calculations. Representative plots were made of photon electron SAFs, evaluating the traditional assumption that all electron energy is absorbed in the source organs. The organ masses in the MOBY and ROBY models are in reasonable agreement with models presented by other investigators noting that considerable variation can occur between reported masses. Results consistent with those found by other investigators show that absorbed fractions for electrons for organ self-irradiation were significantly less than 1.0 at energies above 0.5 MeV, as expected for many of these small-sized organs, and measurable cross-irradiation was observed for many organ pairs for high-energy electrons (as would be emitted by nuclides such as (32)P, (90)Y, or (188)Re).
Sprache
Englisch
Identifikatoren
ISSN: 0161-5505
eISSN: 1535-5667, 2159-662X
DOI: 10.2967/jnumed.109.070532
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2929767

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX