Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 692
Shock waves, 2013-05, Vol.23 (3), p.233-249
2013

Details

Autor(en) / Beteiligte
Titel
Spherical combustion clouds in explosions
Ist Teil von
  • Shock waves, 2013-05, Vol.23 (3), p.233-249
Ort / Verlag
Berlin/Heidelberg: Springer-Verlag
Erscheinungsjahr
2013
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • This study explores the properties of spherical combustion clouds in explosions. Two cases are investigated: (1) detonation of a TNT charge and combustion of its detonation products with air, and (2) shock dispersion of aluminum powder and its combustion with air. The evolution of the blast wave and ensuing combustion cloud dynamics are studied via numerical simulations with our adaptive mesh refinement combustion code. The code solves the multi-phase conservation laws for a dilute heterogeneous continuum as formulated by Nigmatulin. Single-phase combustion (e.g., TNT with air) is modeled in the fast-chemistry limit. Two-phase combustion (e.g., Al powder with air) uses an induction time model based on Arrhenius fits to Boiko’s shock tube data, along with an ignition temperature criterion based on fits to Gurevich’s data, and an ignition probability model that accounts for multi-particle effects on cloud ignition. Equations of state are based on polynomial fits to thermodynamic calculations with the Cheetah code, assuming frozen reactants and equilibrium products. Adaptive mesh refinement is used to resolve thin reaction zones and capture the energy-bearing scales of turbulence on the computational mesh (ILES approach). Taking advantage of the symmetry of the problem, azimuthal averaging was used to extract the mean and rms fluctuations from the numerical solution, including: thermodynamic profiles, kinematic profiles, and reaction-zone profiles across the combustion cloud. Fuel consumption was limited to 60–70 %, due to the limited amount of air a spherical combustion cloud can entrain before the turbulent velocity field decays away. Turbulent kinetic energy spectra of the solution were found to have both rotational and dilatational components, due to compressibility effects. The dilatational component was typically about 1 % of the rotational component; both seemed to preserve their spectra as they decayed. Kinetic energy of the blast wave decayed due to the pressure field. Turbulent kinetic energy of the combustion cloud decayed due to enstrophy and dilatation .
Sprache
Englisch
Identifikatoren
ISSN: 0938-1287
eISSN: 1432-2153
DOI: 10.1007/s00193-012-0410-y
Titel-ID: cdi_crossref_primary_10_1007_s00193_012_0410_y

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX