Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Angewandte Chemie (International ed.), 2021-02, Vol.60 (7), p.3619-3624
International ed. in English, 2021

Details

Autor(en) / Beteiligte
Titel
Autonomous Transient pH Flips Shaped by Layered Compartmentalization of Antagonistic Enzymatic Reactions
Ist Teil von
  • Angewandte Chemie (International ed.), 2021-02, Vol.60 (7), p.3619-3624
Auflage
International ed. in English
Ort / Verlag
Germany: Wiley Subscription Services, Inc
Erscheinungsjahr
2021
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Transient signaling orchestrates complex spatiotemporal behaviour in living organisms via (bio)chemical reaction networks (CRNs). Compartmentalization of signal processing is an important aspect for controlling such networks. However, artificial CRNs mostly focus on homogeneous solutions to program autonomous self‐assembling systems, which limits their accessible behaviour and tuneability. Here, we introduce layered compartments housing antagonistic pH‐modulating enzymes and demonstrate that transient pH signals in a supernatant solution can be programmed based on spatial delays. This overcomes limitations of activity mismatches of antagonistic enzymes in solution and allows to flexibly program acidic and alkaline pH lifecycles beyond the possibilities of homogeneous solutions. Lag time, lifetime, and the pH minima and maxima can be precisely programmed by adjusting spatial and kinetic conditions. We integrate these spatially controlled pH flips with switchable peptides, furnishing time‐programmed self‐assemblies and hydrogel material system. Chemical reaction networks based on antagonistic enzymes can show new behaviour when the enzymes are immobilized into layered compartments to impose spatial diffusive constraints. This allows to overcome mismatches of the enzymatic activities and reduces crosstalk in their pH‐dependent activity when targeting pH‐feedback mechanisms to program self‐assembly lifecycles.
Sprache
Englisch
Identifikatoren
ISSN: 1433-7851
eISSN: 1521-3773
DOI: 10.1002/anie.202009542
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7898518

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX