Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
A new dynamical modeling of the WASP-47 system with CHEOPS observations
Ist Teil von
  • Astronomy and astrophysics (Berlin), 2023-05, Vol.673, p.A42
Ort / Verlag
EDP Sciences
Erscheinungsjahr
2023
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Among the hundreds of known hot Jupiters (HJs), only five have been found to have companions on short-period orbits. Within this rare class of multiple planetary systems, the architecture of WASP-47 is unique, hosting an HJ (planet-b) with both an inner and an outer sub-Neptunian mass companion (-e and -d, respectively) as well as an additional non-transiting, long-period giant (-c). The small period ratio between planets -b and -d boosts the transit time variation (TTV) signal, making it possible to reliably measure the masses of these planets in synergy with the radial velocity (RV) technique. In this paper, we present new space- and ground-based photometric data of WASP-47b and WASP-47-d, including 11 unpublished light curves from the ESA mission CHaracterising ExOPlanet Satellite (CHEOPS). We analyzed the light curves in a homogeneous way together with all the publicly available data to carry out a global N -body dynamical modeling of the TTV and RV signals. We retrieved, among other parameters, a mass and density for planet -d of M d = 15.5 ± 0.8 M ⊕ and ρ d = 1.69 ± 0.22 g cm −3 , which is in good agreement with the literature and consistent with a Neptune-like composition. For the inner planet (-e), we found a mass and density of M e = 9.0 ± 0.5 M ⊕ and ρ e = 8.1 ± 0.5 g cm −3 , suggesting an Earth-like composition close to other ultra-hot planets at similar irradiation levels. Though this result is in agreement with previous RV plus TTV studies, it is not in agreement with the most recent RV analysis (at 2.8 σ ), which yielded a lower density compatible with a pure silicate composition. This discrepancy highlights the still unresolved issue of suspected systematic offsets between RV and TTV measurements. In this paper, we also significantly improve the orbital ephemerides of all transiting planets, which will be crucial for any future follow-up.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX