Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 1718
Physica. E, Low-dimensional systems & nanostructures, 2016-01, Vol.75, p.257-265
2016

Details

Autor(en) / Beteiligte
Titel
Thermoelectricity without absorbing energy from the heat sources
Ist Teil von
  • Physica. E, Low-dimensional systems & nanostructures, 2016-01, Vol.75, p.257-265
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2016
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs – one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an “exotic” power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency. •Model of a quantum-dot energy-harvester: a quantum analogue of a thermocouple.•Two thermal reservoirs (heat source and cold environment) and two electric contacts.•Non-local Coulomb heat drag effects, non-locality of laws of thermodynamics.•Finite power output without absorbing heat from the thermal reservoirs.•Can beat a Carnot-efficient conventional thermocouple under equivalent conditions.
Sprache
Englisch
Identifikatoren
ISSN: 1386-9477
eISSN: 1873-1759
DOI: 10.1016/j.physe.2015.09.025
Titel-ID: cdi_swepub_primary_oai_research_chalmers_se_1b155530_dace_4f71_989e_2ada8f78d5c2

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX