Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 50

Details

Autor(en) / Beteiligte
Titel
Underlying event properties in pp collisions at s = 13 TeV
Ist Teil von
  • The journal of high energy physics, 2020-04, Vol.2020 (4)
Ort / Verlag
Berlin/Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2020
Quelle
EZB Free E-Journals
Beschreibungen/Notizen
  • A bstract This article reports measurements characterizing the Underlying Event (UE) associated with hard scatterings at midrapidity (| η | < 0 . 8) in pp collisions at s = 13 TeV. The hard scatterings are identified by the leading particle, the charged particle with the highest transverse momentum ( p T leading ) in the event. Charged-particle number-densities and summed transverse-momentum densities are measured in different azimuthal regions defined with respect to the leading particle direction: Toward, Transverse, and Away. The Toward and Away regions contain the fragmentation products of the hard scatterings in addition to the UE contribution, whereas particles in the Transverse region are expected to originate predominantly from the UE. The study is performed as a function of p T leading with three different p T thresholds for the associated particles, p T track > 0.15, 0.5, and 1.0 GeV/ c . The charged-particle density in the Transverse region rises steeply for low values of p T leading and reaches a plateau. The results confirm the trend that the charged-particle density in the Transverse region shows a stronger increase with s than the inclusive charged-particle density at midrapidity. The UE activity is increased by approximately 20% when going from 7 TeV to 13 TeV pp collisions. The plateau in the Transverse region (5 < p T leading < 40 GeV/ c ) is further characterized by the probability distribution of its charged-particle multiplicity normalized to its average value (relative transverse activity, R T ) and the mean transverse momentum as a function of R T . Experimental results are compared to model calculations using PYTHIA 8 and EPOS LHC. The overall agreement between models and data is within 30%. These measurements provide new insights on the interplay between hard scatterings and the associated UE in pp collisions.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX