Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 257

Details

Autor(en) / Beteiligte
Titel
Comparative analysis of metazoan chromatin organization
Ist Teil von
  • Nature (London), 2014-08, Vol.512 (7515), p.449-452
Ort / Verlag
London: Nature Publishing Group UK
Erscheinungsjahr
2014
Quelle
EBSCOhost Psychology and Behavioral Sciences Collection
Beschreibungen/Notizen
  • A large collection of new modENCODE and ENCODE genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human are analysed; this reveals many conserved features of chromatin organization among the three organisms, as well as notable differences in the composition and locations of repressive chromatin. Conserved genes from humans to fly and worm This study describes numerous new genome-wide chromatin data sets from cell lines and developmental stages of Homo sapiens , Drosophila melanogaster and Caenorhabditis elegans generated by the ENCODE and modENCODE consortia. The results point to many conserved features of chromatin organization among the three organisms, while identifying differences in the composition and locations of repressive chromatin. Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms 1 , 2 , 3 . Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal ‘arms’, and centromeres distributed along their lengths 4 , 5 . To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX