Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 65
Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2020-11, Vol.476 (2243), p.1-26
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Shearlets as feature extractor for semantic edge detection: the model-based and data-driven realm
Ist Teil von
  • Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2020-11, Vol.476 (2243), p.1-26
Ort / Verlag
England: Royal Society
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Semantic edge detection has recently gained a lot of attention as an image-processing task, mainly because of its wide range of real-world applications. This is based on the fact that edges in images contain most of the semantic information. Semantic edge detection involves two tasks, namely pure edge detection and edge classification. Those are in fact fundamentally distinct in terms of the level of abstraction that each task requires. This fact is known as the distracted supervision paradox and limits the possible performance of a supervised model in semantic edge detection. In this work, we will present a novel hybrid method that is based on a combination of the model-based concept of shearlets, which provides probably optimally sparse approximations of a model class of images, and the data-driven method of a suitably designed convolutional neural network. We show that it avoids the distracted supervision paradox and achieves high performance in semantic edge detection. In addition, our approach requires significantly fewer parameters than a pure data-driven approach.
Sprache
Englisch
Identifikatoren
ISSN: 1364-5021, 1471-2946
eISSN: 1471-2946
DOI: 10.1098/rspa.2019.0841
Titel-ID: cdi_swepub_primary_oai_DiVA_org_kth_288430

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX