Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Machine Learning for Medical Image Reconstruction, 2019, Vol.11905, p.151-162
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Spatiotemporal PET Reconstruction Using ML-EM with Learned Diffeomorphic Deformation
Ist Teil von
  • Machine Learning for Medical Image Reconstruction, 2019, Vol.11905, p.151-162
Ort / Verlag
Switzerland: Springer International Publishing AG
Erscheinungsjahr
2019
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Patient movement in emission tomography deteriorates reconstruction quality because of motion blur. Gating the data improves the situation somewhat: each gate contains a movement phase which is approximately stationary. A standard method is to use only the data from a few gates, with little movement between them. However, the corresponding loss of data entails an increase of noise. Motion correction algorithms have been implemented to take into account all the gated data, but they do not scale well in computation time, especially not in 3D. We propose a novel motion correction algorithm which addresses the scalability issue. Our approach is to combine an enhanced ML-EM algorithm with deep learning based movement registration. The training is unsupervised, and with artificial data. We expect this approach to scale very well to higher resolutions and to 3D, as the overall cost of our algorithm is only marginally greater than that of a standard ML-EM algorithm. We show that we can significantly decrease the noise corresponding to a limited number of gates.
Sprache
Englisch
Identifikatoren
ISBN: 3030338428, 9783030338428
ISSN: 0302-9743
eISSN: 1611-3349
DOI: 10.1007/978-3-030-33843-5_14
Titel-ID: cdi_springer_books_10_1007_978_3_030_33843_5_14

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX