Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Cancer cell, 2018-04, Vol.33 (4), p.690-705.e9
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers
Ist Teil von
  • Cancer cell, 2018-04, Vol.33 (4), p.690-705.e9
Ort / Verlag
United States: Elsevier Inc
Erscheinungsjahr
2018
Quelle
Access via ScienceDirect (Elsevier)
Beschreibungen/Notizen
  • We analyzed molecular data on 2,579 tumors from The Cancer Genome Atlas (TCGA) of four gynecological types plus breast. Our aims were to identify shared and unique molecular features, clinically significant subtypes, and potential therapeutic targets. We found 61 somatic copy-number alterations (SCNAs) and 46 significantly mutated genes (SMGs). Eleven SCNAs and 11 SMGs had not been identified in previous TCGA studies of the individual tumor types. We found functionally significant estrogen receptor-regulated long non-coding RNAs (lncRNAs) and gene/lncRNA interaction networks. Pathway analysis identified subtypes with high leukocyte infiltration, raising potential implications for immunotherapy. Using 16 key molecular features, we identified five prognostic subtypes and developed a decision tree that classified patients into the subtypes based on just six features that are assessable in clinical laboratories. •Integrated analysis finds molecular features characteristic of gynecologic tumors•Subtypes with high leukocyte infiltration, a marker for immune response, identified•Gene-lncRNA interaction network of ESR1, DKC1, and lncRNAs TERC, NEAT1, and TUG1 identified•Decision tree to group patients into clinically relevant prognostic subtypes proposed By performing molecular analyses of 2,579 TCGA gynecological (OV, UCEC, CESC, and UCS) and breast tumors, Berger et al. identify five prognostic subtypes using 16 key molecular features and propose a decision tree based on six clinically assessable features that classifies patients into the subtypes.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX