Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 65
Inverse problems, 2017-12, Vol.33 (12), p.124007
2017
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Solving ill-posed inverse problems using iterative deep neural networks
Ist Teil von
  • Inverse problems, 2017-12, Vol.33 (12), p.124007
Ort / Verlag
IOP Publishing
Erscheinungsjahr
2017
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • We propose a partially learned approach for the solution of ill-posed inverse problems with not necessarily linear forward operators. The method builds on ideas from classical regularisation theory and recent advances in deep learning to perform learning while making use of prior information about the inverse problem encoded in the forward operator, noise model and a regularising functional. The method results in a gradient-like iterative scheme, where the 'gradient' component is learned using a convolutional network that includes the gradients of the data discrepancy and regulariser as input in each iteration. We present results of such a partially learned gradient scheme on a non-linear tomographic inversion problem with simulated data from both the Sheep-Logan phantom as well as a head CT. The outcome is compared against filtered backprojection and total variation reconstruction and the proposed method provides a 5.4 dB PSNR improvement over the total variation reconstruction while being significantly faster, giving reconstructions of 512×512 pixel images in about 0.4 s using a single graphics processing unit (GPU).
Sprache
Englisch
Identifikatoren
ISSN: 0266-5611, 1361-6420
eISSN: 1361-6420
DOI: 10.1088/1361-6420/aa9581
Titel-ID: cdi_swepub_primary_oai_DiVA_org_kth_219496

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX