Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 18 von 448

Details

Autor(en) / Beteiligte
Titel
Global change effects on plant communities are magnified by time and the number of global change factors imposed
Ist Teil von
  • Proceedings of the National Academy of Sciences - PNAS, 2019-09, Vol.116 (36), p.17867-17873
Ort / Verlag
United States: National Academy of Sciences
Erscheinungsjahr
2019
Quelle
MEDLINE
Beschreibungen/Notizen
  • Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (10 y). In contrast, long-term (<10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.
Sprache
Englisch
Identifikatoren
ISSN: 0027-8424, 1091-6490
eISSN: 1091-6490
DOI: 10.1073/pnas.1819027116
Titel-ID: cdi_swepub_primary_oai_DiVA_org_hj_45635

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX