Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 15517

Details

Autor(en) / Beteiligte
Titel
Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks
Ist Teil von
  • Applied energy, 2019-04, Vol.240, p.276-294
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2019
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •Energy prediction model has been combined with estimated occupancy profile.•Blind system identification models give accurate estimation of occupancy.•Extra input of occupancy can improve the accuracy of electricity prediction models.•Best performance is obtained with ensemble model in all neural network structures. Occupancy behaviour plays an important role in energy consumption in buildings. Currently, the shallow understanding of occupancy has led to a considerable performance gap between predicted and measured energy use. This paper presents an approach to estimate the occupancy based on blind system identification (BSI), and a prediction model of electricity consumption by an air-conditioning system is developed and reported based on an artificial neural network with the BSI estimation of the number of occupants as an input. This starts from the identification of indoor CO2 dynamics derived from the mass-conservation law and venting levels. The unknown parameters, including the occupancy and model parameters, are estimated by using a frequentist maximum-likelihood algorithm and Bayesian estimation. The second phase is to establish the prediction model of the electricity consumption of the air-conditioning system by using a feed-forward neural network (FFNN) and extreme learning machine (ELM), as well as ensemble models. To analyse some aspects of the benchmark test for identifying the effect of structure parameters and input-selection alternatives, three studies are conducted on (1) the effect of predictor selection based on principal component analysis, (2) the effect of the estimated occupancy as the supplementary input, and (3) the effect of the neural network ensemble. The result shows that the occupancy number, as the input, is able to improve the accuracy in predicting energy consumption using a neural-network model.
Sprache
Englisch
Identifikatoren
ISSN: 0306-2619, 1872-9118
eISSN: 1872-9118
DOI: 10.1016/j.apenergy.2019.02.056
Titel-ID: cdi_swepub_primary_oai_DiVA_org_du_29562

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX