Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Numerical Simulation Techniques for the Efficient and Accurate Treatment of Local Fluidic Transport Processes Together with Chemical Reactions
Ist Teil von
  • Reactive Bubbly Flows, 2021, Vol.128, p.413-439
Ort / Verlag
Switzerland: Springer International Publishing AG
Erscheinungsjahr
2021
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • This work describes a numerical framework developed for the efficient and accurate simulation of microfluidic applications related to two leading experiments of the DFG SPP 1740 research initiative, namely the ‘Superfocus Micromixer’ and the ‘Taylor bubble flow’. Both of these basic experiments are considered in a reactive framework using the SPP 1740 specific chemical reaction systems. A description of the utilized numerical components related to special meshing techniques, discretization methods and decoupling solver strategies is provided and its particular implementation is performed in the open-source CFD package FeatFlow (FeatFlow Homepage, www.featflow.de, version from July 2020 [5]). A demonstration of the developed simulation tool is based on already defined validation cases and on suitable examples being responsible for the determination of the related convergence properties (in the range of targeted process parameter values) of the developed numerical framework. The subsequent studies give an insight into a parameter estimation method with the aim of determination of unknown reaction-kinetic parameter values by the help of experimentally measured data.
Sprache
Englisch
Identifikatoren
ISBN: 9783030723606, 3030723607
ISSN: 0926-5112
eISSN: 2215-0056
DOI: 10.1007/978-3-030-72361-3_17
Titel-ID: cdi_springer_books_10_1007_978_3_030_72361_3_17
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX