Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 12

Details

Autor(en) / Beteiligte
Titel
NES2RA: Network expansion by stratified variable subsetting and ranking aggregation
Ist Teil von
  • The international journal of high performance computing applications, 2018-05, Vol.32 (3), p.380-392
Ort / Verlag
London, England: SAGE Publications
Erscheinungsjahr
2018
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Gene network expansion is a task of the foremost importance in computational biology. Gene network expansion aims at finding new genes to expand a given known gene network. To this end, we developed gene@home, a BOINC-based project that finds candidate genes that expand known local gene networks using NESRA. In this paper, we present NES2RA, a novel approach that extends and improves NESRA by modeling, using a probability vector, the confidence of the presence of the genes belonging to the local gene network. NES2RA adopts intensive variable-subsetting strategies, enabled by the computational power provided by gene@home volunteers. In particular, we use the skeleton procedure of the PC-algorithm to discover candidate causal relationships within each subset of variables. Finally, we use state-of-the-art aggregators to combine the results into a single ranked candidate genes list. The resulting ranking guides the discovery of unknown relations between genes and a priori known local gene networks. Our experimental results show that NES2RA outperforms the PC-algorithm and its order-independent PC-stable version, ARACNE, and our previous approach, NESRA. In this paper we extensively discuss the computational aspects of the NES2RA approach and we also present and validate expansions performed on the model plant Arabidopsis thaliana and the model bacteria Escherichia coli.
Sprache
Englisch
Identifikatoren
ISSN: 1094-3420
eISSN: 1741-2846
DOI: 10.1177/1094342016662508
Titel-ID: cdi_sage_journals_10_1177_1094342016662508
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX